IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/18-fe-2013.html
   My bibliography  Save this paper

How Well do Analysts Predict Stock Prices? Evidence from Russia

Author

Listed:
  • Henry Penikas

    (National Research University Higher School of Economics (Moscow, Russia). International Laboratory of Decision Choice and Analysis)

  • Proskurin S.

    (National Research University Higher School of Economics, Department of Finance)

Abstract

In this research we found that 56.8% of expert recommendations on selling or buying stocks of Russian companies were profitable. We show that the recommendations being publically released have an impact on stock prices, hence market players are likely to follow the recommendations. There also no difference in an analyst’s gender and almost no difference in the day the recommen-dation was made

Suggested Citation

  • Henry Penikas & Proskurin S., 2013. "How Well do Analysts Predict Stock Prices? Evidence from Russia," HSE Working papers WP BRP 18/FE/2013, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:18/fe/2013
    as

    Download full text from publisher

    File URL: http://www.hse.ru/data/2013/10/08/1280452250/18FE2013.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aleskerov, Fuad & Egorova, Lyudmila, 2012. "Is it so bad that we cannot recognize black swans?," Economics Letters, Elsevier, vol. 117(3), pages 563-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Егорова Людмила Геннадьевна, 2014. "Эффективность Торговых Стратегий Мелких Трейдеров," Проблемы управления, CyberLeninka;Общество с ограниченной ответственностью "СенСиДат-Контрол", issue 5, pages 34-41.
    2. A. Belenky & L. Egorova, 2016. "Two approaches to modeling the interaction of small and medium price-taking traders with a stock exchange by mathematical programming techniques," Papers 1610.05703, arXiv.org.
    3. Liudmila G. Egorova, 2014. "The Effectiveness Of Different Trading Strategies For Price-Takers," HSE Working papers WP BRP 29/FE/2014, National Research University Higher School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Wen-Yuan & Tsai, I-Chun, 2019. "Black swan events in China's stock markets: Intraday price behaviors on days of volatility," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 395-411.
    2. Lyudmila G. Egorova, 2014. "Agent-Based Models of Stock Exchange: Analysis via Computational Simulation," Springer Optimization and Its Applications, in: Valery A. Kalyagin & Panos M. Pardalos & Themistocles M. Rassias (ed.), Network Models in Economics and Finance, edition 127, pages 147-158, Springer.
    3. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    4. Егорова Людмила Геннадьевна, 2014. "Эффективность Торговых Стратегий Мелких Трейдеров," Проблемы управления, CyberLeninka;Общество с ограниченной ответственностью "СенСиДат-Контрол", issue 5, pages 34-41.
    5. A. Belenky & L. Egorova, 2016. "Two approaches to modeling the interaction of small and medium price-taking traders with a stock exchange by mathematical programming techniques," Papers 1610.05703, arXiv.org.
    6. Liudmila G. Egorova, 2014. "The Effectiveness Of Different Trading Strategies For Price-Takers," HSE Working papers WP BRP 29/FE/2014, National Research University Higher School of Economics.

    More about this item

    Keywords

    financial analyst; forecast;

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:18/fe/2013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.