IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/109hum2015.html
   My bibliography  Save this paper

Transcendental Analysis of Mathematics: The Transcendental Constructivism (Pragmatism) as the Program of Foundation of Mathematics

Author

Listed:
  • Sergey L. Katrechko

    (National Research University Higher School of Economics)

Abstract

Kant's transcendental philosophy (transcendentalism) is associated with the study and substantiation of objective validity both “a human mode of cognition” as whole, and specific kinds of our cognition (resp. knowledge) [KrV, B 25]. This article is devoted to Kant’s theory of the construction of mathematical concepts and his understanding (substantiation) of mathematics as cognition “through construction of concepts in intuition” [KrV, B 752] (see also: “to construct a concept means to exhibit a priori the intuition corresponding to it”; [KrV, Â 741]). Unlike the natural sciences the mathematics is an abstract – formal cognition (knowledge), its thoroughness “is grounded on definitions, axioms, and demonstrations” [KrV, B 754]. The article consequently analyzes each of these components. Mathematical objects, unlike the specific ‘physical’ objects, have an abstract character (a–objects vs. the–objects) and they are determined by Hume’s principle (Hume – Frege principle of abstraction). Transcendentalism considers the question of genesis and ontological status of mathematical concepts. To solve them Kant suggests the doctrine of schematism (Kant’s schemata are “acts of pure thought" [KrV, B 81]), which is compared with the contemporary theories of mathematics. We develop the dating back to Kant original concept of the transcendental constructivism (pragmatism) as the as the program of foundation of mathematics. “Constructive” understanding of mathematical acts is a significant innovation of Kant. Thus mathematical activity is considered as a two-level system, which supposes a “descent” from the level of rational under-standing to the level of sensual contemplation and a return “rise”. In his theory Kant highlights ostensive (geometric) and symbolic (algebraic) constructing. The article analyses each of them and shows that it is applicable to modern mathematics, in activity of which both types of Kant's constructing are intertwined

Suggested Citation

  • Sergey L. Katrechko, 2015. "Transcendental Analysis of Mathematics: The Transcendental Constructivism (Pragmatism) as the Program of Foundation of Mathematics," HSE Working papers WP BRP 109/HUM/2015, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:109hum2015
    as

    Download full text from publisher

    File URL: http://www.hse.ru/data/2015/10/20/1079412594/109HUM2015.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:109hum2015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.