Bivariate Time Series Modelling of Financial Count Data
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- A.M.M. Shahiduzzaman Quoreshi, 2017.
"A bivariate integer-valued long-memory model for high-frequency financial count data,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(3), pages 1080-1089, February.
- Quoreshi, A.M.M. Shahiduzzaman, 2014. "Bivariate Integer-Valued Long Memory Model for High Frequency Financial Count Data," Working Papers 2014/03, Blekinge Institute of Technology, Department of Industrial Economics.
- A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
- Quoreshi, Shahiduzzaman, 2006. "Time Series Modelling Of High Frequency Stock Transaction Data," Umeå Economic Studies 675, Umeå University, Department of Economics.
- Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," Umeå Economic Studies 673, Umeå University, Department of Economics.
- Quoreshi, A.M.M. Shahiduzzaman, 2008.
"A vector integer-valued moving average model for high frequency financial count data,"
Economics Letters, Elsevier, vol. 101(3), pages 258-261, December.
- Quoreshi, Shahiduzzaman, 2006. "A Vector Integer-Valued Moving Average Modelfor High Frequency Financial Count Data," Umeå Economic Studies 674, Umeå University, Department of Economics.
- Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
More about this item
Keywords
Count data; Intra-day; High frequency; Time series; Estimation; Long memory; Finance;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2005-04-16 (Econometrics)
- NEP-ETS-2005-04-16 (Econometric Time Series)
- NEP-FIN-2005-04-16 (Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:umnees:0655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Skog (email available below). General contact details of provider: https://edirc.repec.org/data/inumuse.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.