IDEAS home Printed from https://ideas.repec.org/p/hhs/sdueko/2013_005.html
   My bibliography  Save this paper

Solving the selective multi-category parallel-servicing problem

Author

Listed:
  • Range, Troels Martin

    (Department of Business and Economics)

  • Lusby, Richard Martin

    (Department of Engineering Management)

  • Larsen, Jesper

    (Department of Engineering Management)

Abstract

In this paper we present a new scheduling problem and describe a shortest path based heuristic as well as a dynamic programming based exact optimization algorithm to solve it. The Selective Multi-Category Parallel-Servicing Problem (SMCPSP) arises when a set of jobs has to be scheduled on a server (machine) with limited capacity. Each job requests service in a prespecified time window and belongs to a certain category. Jobs may be serviced partially, incurring a penalty; however, only jobs of the same category can be processed simultaneously. One must identify the best subset of jobs to process in each time interval of a given planning horizon while respecting the server capacity and scheduling requirements. We compare the proposed solution methods with a MILP formulation and show that the dynamic programming approach is faster when the number of categories is large, whereas the MILP can be solved faster when the number of categories is small.

Suggested Citation

  • Range, Troels Martin & Lusby, Richard Martin & Larsen, Jesper, 2013. "Solving the selective multi-category parallel-servicing problem," Discussion Papers on Economics 5/2013, University of Southern Denmark, Department of Economics.
  • Handle: RePEc:hhs:sdueko:2013_005
    as

    Download full text from publisher

    File URL: https://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2013/dpbe5_2013.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    2. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    3. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    4. Range, Troels Martin & Lusby, Richard Martin & Larsen, Jesper, 2013. "A column generation approach for solving the patient admission scheduling problem," Discussion Papers on Economics 1/2013, University of Southern Denmark, Department of Economics.
    5. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    2. Ghoniem, Ahmed & Farhadi, Farbod & Reihaneh, Mohammad, 2015. "An accelerated branch-and-price algorithm for multiple-runway aircraft sequencing problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 34-43.
    3. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    4. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2024. "Integer optimization models and algorithms for the multi-period non-shareable resource allocation problem," European Journal of Operational Research, Elsevier, vol. 317(1), pages 43-59.
    5. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    6. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    8. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    9. Chung‐Yee Lee & Zhi‐Long Chen, 2000. "Scheduling jobs and maintenance activities on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 145-165, March.
    10. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    11. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    12. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2020. "Lexicographic Bin-Packing Optimization for Loading Trucks in a Direct-Shipping System," Working Papers 2009, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Dollevoet, T.A.B. & Pecin, D. & Spliet, R., 2020. "The path programming problem and a partial path relaxation," Econometric Institute Research Papers EI-2020-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    15. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    16. Katrin Heßler & Timo Gschwind & Stefan Irnich, 2017. "Stabilized Branch-and-Price Algorithms for Vector Packing Problems," Working Papers 1713, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Range, Troels Martin, 2013. "Exploiting Set-Based Structures to Accelerate Dynamic Programming Algorithms for the Elementary Shortest Path Problem with Resource Constraints," Discussion Papers on Economics 17/2013, University of Southern Denmark, Department of Economics.
    18. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    19. Leonardo Lozano & Daniel Duque & Andrés L. Medaglia, 2016. "An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints," Transportation Science, INFORMS, vol. 50(1), pages 348-357, February.
    20. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.

    More about this item

    Keywords

    Machine scheduling; dynamic programming; node-disjoint shortest-path problem; preprocessing;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2013_005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Astrid Holm Nielsen (email available below). General contact details of provider: https://edirc.repec.org/data/okioudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.