IDEAS home Printed from https://ideas.repec.org/p/hhs/ifauwp/2017_023.html
   My bibliography  Save this paper

Model misspecification and bias for inverse probability weighting and doubly robust estimators

Author

Listed:
  • Waernbaum, Ingeborg

    (IFAU and Department of statistics, UmeƄ University)

  • Pazzagli, Laura

    (Division of Statistics, Department of Economics, University of Perugia)

Abstract

In the causal inference literature a class of semi-parametric estimators is called robust if the estimator has desirable properties under the assumption that at least one of the working models is correctly specified. A standard example is a doubly robust estimator that specifies parametric models both for the propensity score and the outcome regression. When estimating a causal parameter in an observational study the role of parametric models is often not to be true representations of the data generating process, instead the motivation for their use is to facilitate the adjustment for confounding, for example by reducing the dimension of the covariate vector, making the assumption of at least one true model unlikely to hold. In this paper we propose a crude analytical approach to study the large sample bias of estimators when all models are assumed to be approximations of the true data generating process, i.e., all models are misspecified. We apply our approach to three prototypical estimators, two inverse probability weighting (IPW) estimators, using a misspecified propensity score model, and a doubly robust (DR) estimator, using misspecified models for the outcome regression and the propensity score. To compare the consequences of the model misspecifications for the estimators we show conditions for when using normalized weights leads to a smaller bias compared to a simple IPW estimator. To analyze the question of when the use of two misspecified models are better than one we derive necessary and sucient conditions for when the DR estimator has a smaller bias than the simple IPW estimator and when it has a smaller bias than the IPW estimator with normalized weights. For most conditions in the comparisons, the covariance between the propensity score model error and the conditional outcomes plays an important role. The results are illustrated in a simulation study.

Suggested Citation

  • Waernbaum, Ingeborg & Pazzagli, Laura, 2017. "Model misspecification and bias for inverse probability weighting and doubly robust estimators," Working Paper Series 2017:23, IFAU - Institute for Evaluation of Labour Market and Education Policy.
  • Handle: RePEc:hhs:ifauwp:2017_023
    as

    Download full text from publisher

    File URL: https://www.ifau.se/sv/Forskning/Publikationer/Working-papers/2017/model-misspecification-and-bias-for-inverse-probability-weighting-and-doubly-robust-estimators/
    File Function: Full text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.

    More about this item

    Keywords

    average causal effects; comparing biases; propensity score; robustness;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ifauwp:2017_023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ali Ghooloo (email available below). General contact details of provider: https://edirc.repec.org/data/ifagvse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.