IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00446574.html
   My bibliography  Save this paper

Estimating Nonlinearities in Spatial Autoregressive Models

Author

Listed:
  • Nicolas Debarsy

    (CERPE - Centre de Recherches en Economie Régionale et Politique Economique - FUNDP - Facultés Universitaires Notre Dame de la Paix)

  • Vincenzo Verardi

    (ECARES - European Center for Advanced Research in Economics and Statistics - ULB - Université libre de Bruxelles, CRED - Centre de Recherche en Economie du Développement - FUNDP - Facultés Universitaires Notre Dame de la Paix)

Abstract

In spatial autoregressive models, the functional form of autocorrelation is assumed to be linear. In this paper, we propose a simple semiparametric procedure, based on Yatchew's (1998) partial linear least squares, that relaxes this restriction. Simple simulations show that this model outperforms traditional SAR estimation when nonlinearities are present. We then apply the methodology on real data to test for the spatial pattern of voting for independent candidates in US presidential elections. We find that in some counties, votes for "third candidates" are non-linearly related to votes for "third candidates" in neighboring counties, which pleads for strategic behavior.

Suggested Citation

  • Nicolas Debarsy & Vincenzo Verardi, 2010. "Estimating Nonlinearities in Spatial Autoregressive Models," Working Papers halshs-00446574, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00446574
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00446574
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00446574/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    2. Enno Mammen, "undated". "Comparing nonparametric versus parametric regression fits," Statistic und Oekonometrie 9205, Humboldt Universitaet Berlin.
    3. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    4. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    5. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    6. Adonis Yatchew, 1998. "Nonparametric Regression Techniques in Economics," Journal of Economic Literature, American Economic Association, vol. 36(2), pages 669-721, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Liangjun & Jin, Sainan, 2010. "Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 157(1), pages 18-33, July.
    2. repec:asg:wpaper:1006 is not listed on IDEAS
    3. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    4. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    5. Syed Abul Hasan, 2016. "Engel curves and equivalence scales for Bangladesh," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(2), pages 301-315, April.
    6. Lee, Jungyoon & Robinson, Peter M., 2013. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 58188, London School of Economics and Political Science, LSE Library.
    7. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
    8. Su, Liangjun, 2012. "Semiparametric GMM estimation of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 167(2), pages 543-560.
    9. Denis Chetverikov & Daniel Wilhelm, 2016. "Nonparametric instrumental variable estimation under monotonicity," CeMMAP working papers 48/16, Institute for Fiscal Studies.
    10. Syed Abul Hasan, 2013. "The impact of a large rice price increase on welfare and poverty in Bangladesh," ASARC Working Papers 2013-11, The Australian National University, Australia South Asia Research Centre.
    11. repec:cep:stiecm:/2013/570 is not listed on IDEAS
    12. Denis Chetverikov & Daniel Wilhelm, 2015. "Nonparametric instrumental variable estimation under monotonicity," CeMMAP working papers 39/15, Institute for Fiscal Studies.
    13. Jungyoon Lee & Peter M Robinson, 2013. "Series Estimation under Cross-sectional Dependence," STICERD - Econometrics Paper Series 570, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    15. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    16. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    17. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    18. S. Wong & C. Yiu & K. Chau, 2013. "Trading Volume-Induced Spatial Autocorrelation in Real Estate Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(4), pages 596-608, May.
    19. Quentin Frère & Matthieu Leprince & Sonia Paty, 2014. "The Impact of Intermunicipal Cooperation on Local Public Spending," Urban Studies, Urban Studies Journal Limited, vol. 51(8), pages 1741-1760, June.
    20. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    21. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    22. Doraszelski, Ulrich & Jaumandreu, Jordi, 2006. "R&D and productivity: Estimating production functions when productivity is endogenous," MPRA Paper 1246, University Library of Munich, Germany.

    More about this item

    Keywords

    Spatial econometrics; semiparametric estimations;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00446574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.