IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00289456.html
   My bibliography  Save this paper

Asymptotic refinements of bootstrap tests in a linear regression model ; A CHM bootstrap using the first four moments of the residuals

Author

Listed:
  • Pierre-Eric Treyens

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider linear regression models and we suppose that disturbances are either Gaussian or non Gaussian. Then, by using Edgeworth expansions, we compute the exact errors in the rejection probability (ERPs) for all one-restriction tests (asymptotic and bootstrap) which can occur in these linear models. More precisely, we show that the ERP is the same for the asymptotic test as for the classical parametric bootstrap test it is based on as soon as the third cumulant is nonnul. On the other side, the non parametric bootstrap performs almost always better than the parametric bootstrap. There are two exceptions. The first occurs when the third and fourth cumulants are null, in this case parametric and non parametric bootstrap provide exactly the same ERPs, the second occurs when we perform a t-test or its associated bootstrap (parametric or not) in the models y =μ+u and y=ax+u where the disturbances have nonnull kurtosis coefficient and a skewness coefficient equal to zero. In that case, the ERPs of any test (asymptotic or bootstrap) we perform are of the same order.Finally, we provide a new parametric bootstrap using the first four moments of the distribution of the residuals which is as accurate as a non parametric bootstrap which uses these first four moments implicitly. We will introduce it as the parametric bootstrap considering higher moments (CHM), and thus, we will speak about the CHM parametric bootstrap

Suggested Citation

  • Pierre-Eric Treyens, 2008. "Asymptotic refinements of bootstrap tests in a linear regression model ; A CHM bootstrap using the first four moments of the residuals," Working Papers halshs-00289456, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00289456
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00289456
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00289456/document
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    kurtosis; Non parametric bootstrap; Parametric Bootstrap; Cumulants; Skewness; kurtosis.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00289456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.