IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04997515.html
   My bibliography  Save this paper

Multivariate Self-Exciting Processes with Dependencies

Author

Listed:
  • Caroline Hillairet

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • Thomas Peyrat

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • Anthony Réveillac

    (INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse, IMT - Institut de Mathématiques de Toulouse UMR5219 - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique, UT - Université de Toulouse)

Abstract

This paper introduces the class of multidimensional self-exciting processes with dependencies (MSPD), which is a unifying writing for a large class of processes: counting, loss, intensity, and also shifted processes. The framework takes into account dynamic dependencies between the frequency and the severity components of the risk, and therefore induces theoretical challenges in the computations of risk valuations. We present a general method for calculating different quantities related to these MSPDs, which combines the Poisson imbedding, the pseudo-chaotic expansion and Malliavin calculus. The methodology is illustrated for the computation of explicit general correlation formula.

Suggested Citation

  • Caroline Hillairet & Thomas Peyrat & Anthony Réveillac, 2025. "Multivariate Self-Exciting Processes with Dependencies," Working Papers hal-04997515, HAL.
  • Handle: RePEc:hal:wpaper:hal-04997515
    Note: View the original document on HAL open archive server: https://hal.science/hal-04997515v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04997515v2/document
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04997515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.