IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04976320.html
   My bibliography  Save this paper

Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting

Author

Listed:
  • Matteo Mogliani
  • Anna Simoni

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, CNRS - Centre National de la Recherche Scientifique)

Abstract

We propose a Machine Learning approach for optimal macroeconomic density forecasting in a high-dimensional setting where the underlying model exhibits a known group structure. Our approach is general enough to encompass specific forecasting models featuring either many covariates, or unknown nonlinearities, or series sampled at different frequencies. By relying on the novel concept of bi-level sparsity in time-series econometrics, we construct density forecasts based on a prior that induces sparsity both at the group level and within groups. We demonstrate the consistency of both posterior and predictive distributions. We show that the posterior distribution contracts at the minimax-optimal rate and, asymptotically, puts mass on a set that includes the support of the model. Our theory allows for correlation between groups, while predictors in the same group can be characterized by strong covariation as well as common characteristics and patterns. Finite sample performance is illustrated through comprehensive Monte Carlo experiments and a real-data nowcasting exercise of the US GDP growth rate.

Suggested Citation

  • Matteo Mogliani & Anna Simoni, 2025. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Working Papers hal-04976320, HAL.
  • Handle: RePEc:hal:wpaper:hal-04976320
    DOI: 10.48550/arXiv.2404.02671
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04976320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.