IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04930402.html
   My bibliography  Save this paper

Consistent time travel for realistic interactions with historical data: reinforcement learning for market making

Author

Listed:
  • Vincent Ragel

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

  • Damien Challet

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

Abstract

Reinforcement learning works best when the impact of the agent's actions on its environment can be perfectly simulated or fully appraised from available data. Some systems are however both hard to simulate and very sensitive to small perturbations. An additional difficulty arises when a RL agent is trained offline to be part of a multi-agent system using only anonymous data, which makes it impossible to infer the state of each agent, thus to use data directly. Typical examples are competitive systems without agent-resolved data such as financial markets. We introduce consistent data time travel for offline RL as a remedy for these problems: instead of using historical data in a sequential way, we argue that one needs to perform time travel in historical data, i.e., to adjust the time index so that both the past state and the influence of the RL agent's action on the system coincide with real data. This both alleviates the need to resort to imperfect models and consistently accounts for both the immediate and long-term reactions of the system when using anonymous historical data. We apply this idea to market making in limit order books, a notoriously difficult task for RL; it turns out that the gain of the agent is significantly higher with data time travel than with naive sequential data, which suggests that the difficulty of this task for RL may have been overestimated.

Suggested Citation

  • Vincent Ragel & Damien Challet, 2025. "Consistent time travel for realistic interactions with historical data: reinforcement learning for market making," Working Papers hal-04930402, HAL.
  • Handle: RePEc:hal:wpaper:hal-04930402
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04930402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.