IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04639420.html
   My bibliography  Save this paper

Functional Decomposition and Estimation of Irreversibility in Time Series via Machine Learning

Author

Listed:
  • Michele Vodret

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

  • Cristiano Pacini

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

  • Christian Bongiorno

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

Abstract

This work introduces a novel, simple, and flexible method to quantify irreversibility in generic high-dimensional time series based on the well-known mapping to a binary classification problem. Our approach utilizes gradient boosting for estimation, providing a model-free, nonlinear analysis able to handle large-dimensional systems while requiring minimal or no calibration. Our procedure is divided into three phases: trajectory encoding, Markovian order identification, and hypothesis testing for variable interactions. The latter is the key innovation that allows us to selectively switch off variable interactions to discern their specific contribution to irreversibility. When applied to financial markets, our findings reveal a distinctive shift: during stable periods, irreversibility is mainly related to short-term patterns, whereas in unstable periods, these short-term patterns are disrupted, leaving only contributions from stable long-term ones. This observed transition underscores the crucial importance of high-order variable interactions in understanding the dynamics of financial markets, especially in times of turbulence.

Suggested Citation

  • Michele Vodret & Cristiano Pacini & Christian Bongiorno, 2024. "Functional Decomposition and Estimation of Irreversibility in Time Series via Machine Learning," Working Papers hal-04639420, HAL.
  • Handle: RePEc:hal:wpaper:hal-04639420
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04639420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.