IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04567802.html
   My bibliography  Save this paper

Optimal Portfolio Choice with Cross-Impact Propagators

Author

Listed:
  • Eduardo Abi Jaber

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • Eyal Neuman

    (Imperial College London)

  • Sturmius Tuschmann

    (Imperial College London)

Abstract

We consider a class of optimal portfolio choice problems in continuous time where the agent's transactions create both transient cross-impact driven by a matrix-valued Volterra propagator, as well as temporary price impact. We formulate this problem as the maximization of a revenue-risk functional, where the agent also exploits available information on a progressively measurable price predicting signal. We solve the maximization problem explicitly in terms of operator resolvents, by reducing the corresponding first order condition to a coupled system of stochastic Fredholm equations of the second kind and deriving its solution. We then give sufficient conditions on the matrix-valued propagator so that the model does not permit price manipulation. We also provide an implementation of the solutions to the optimal portfolio choice problem and to the associated optimal execution problem. Our solutions yield financial insights on the influence of cross-impact on the optimal strategies and its interplay with alpha decays.

Suggested Citation

  • Eduardo Abi Jaber & Eyal Neuman & Sturmius Tuschmann, 2024. "Optimal Portfolio Choice with Cross-Impact Propagators," Working Papers hal-04567802, HAL.
  • Handle: RePEc:hal:wpaper:hal-04567802
    Note: View the original document on HAL open archive server: https://hal.science/hal-04567802
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04567802/document
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04567802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.