IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04403055.html
   My bibliography  Save this paper

Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets

Author

Listed:
  • Timothée Fabre

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

  • Ioane Muni Toke

Abstract

We propose a novel approach to marked Hawkes kernel inference which we name the moment-based neural Hawkes estimation method. Hawkes processes are fully characterized by their first and second order statistics through a Fredholm integral equation of the second kind. Using recent advances in solving partial differential equations with physics-informed neural networks, we provide a numerical procedure to solve this integral equation in high dimension. Together with an adapted training pipeline, we give a generic set of hyperparameters that produces robust results across a wide range of kernel shapes. We conduct an extensive numerical validation on simulated data. We finally propose two applications of the method to the analysis of the microstructure of cryptocurrency markets. In a first application we extract the influence of volume on the arrival rate of BTC-USD trades and in a second application we analyze the causality relationships and their directions amongst a universe of 15 cryptocurrency pairs in a centralized exchange.

Suggested Citation

  • Timothée Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Working Papers hal-04403055, HAL.
  • Handle: RePEc:hal:wpaper:hal-04403055
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04403055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.