IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04295416.html
   My bibliography  Save this paper

Reconciling rough volatility with jumps

Author

Listed:
  • Eduardo Abi Jaber

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

  • Nathan de Carvalho

    (UPCité - Université Paris Cité)

Abstract

We reconcile rough volatility models and jump models using a class of reversionary Heston models with fast mean reversions and large vol-of-vols. Starting from hyper-rough Heston models with a Hurst index H ∈ (−1/2, 1/2), we derive a Markovian approximating class of one dimensional reversionary Hestontype models. Such proxies encode a trade-off between an exploding vol-of-vol and a fast mean-reversion speed controlled by a reversionary timescale ϵ > 0 and an unconstrained parameter H ∈ R. Sending ϵ to 0 yields convergence of the reversionary Heston model towards different explicit asymptotic regimes based on the value of the parameter H. In particular, for H ≤ −1/2, the reversionary Heston model converges to a class of Lévy jump processes of Normal Inverse Gaussian type. Numerical illustrations show that the reversionary Heston model is capable of generating at-the-money skews similar to the ones generated by rough, hyper-rough and jump models.

Suggested Citation

  • Eduardo Abi Jaber & Nathan de Carvalho, 2023. "Reconciling rough volatility with jumps," Working Papers hal-04295416, HAL.
  • Handle: RePEc:hal:wpaper:hal-04295416
    Note: View the original document on HAL open archive server: https://hal.science/hal-04295416
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04295416/document
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04295416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.