Author
Listed:
- Samuel Juhel
(CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique, LMD - Laboratoire de Météorologie Dynamique (UMR 8539) - INSU - CNRS - Institut national des sciences de l'Univers - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENPC - École des Ponts ParisTech - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - Département des Géosciences - ENS Paris - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres)
- Adrien Delahais
(CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)
- Vincent Viguie
(CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)
Abstract
Given the interconnectedness of economies and the prevalence of just-in-time production processes, even small interruptions to production caused by natural disasters can lead to great indirect economic impacts. A substantial body of literature on this subject exists, notably with the help of input-output analysis, CGE and agent-based models. However, such models rely on parameters and data which are often unobserved empirically or estimated with wide margins of uncertainty. The reliability of the models is therefore difficult to assess. Here, taking the example of the July 2021 floods in Germany, we analyze to what extent the results of the ARIO model are robust to input data and parameter choices. ARIO model is a widely used model in the literature, and has laid theoretical foundations for several other models. We conduct a sensitivity analysis by varying its key parameters, as well as the multi-regional input output tables which it uses as its main input data. For this, we develop a new resource-efficient Python implementation of the ARIO model, which enables a large number of simulations to be run. Our results show that the choice of the data source and parameters indeed heavily influences the outputs of the model. To ensure the robustness of their results, future studies on indirect economic impacts should incorporate several scenarios and employ data from various sources.
Suggested Citation
Samuel Juhel & Adrien Delahais & Vincent Viguie, 2023.
"Robustness of the evaluation of indirect costs of natural disasters: example of the ARIO model,"
Working Papers
hal-04196749, HAL.
Handle:
RePEc:hal:wpaper:hal-04196749
Note: View the original document on HAL open archive server: https://hal.science/hal-04196749v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04196749. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.