IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04141280.html
   My bibliography  Save this paper

(How) does sectoral detail affect the robustness of policy insights from energy system models? The refining sector’s example

Author

Listed:
  • Claire Nicolas

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Valérie Saint-Antonin
  • Stéphane Tchung-Ming

Abstract

In this research, we rekindle an old debate by questioning the impact on mitigating policy evaluation of detailing a subsector in a global energy-transportation model. We chose the refining sector because it is a relevant case of a sector for which representation widely differs across models and because it offers a unique set of complex joint production in the energy sector. To investigate whether the level of detail in the description of the refinery impacts optimal mitigation options, we take the example of a long-term, national, linear programming based, energy-transport system model (TIMES based). We found that the refinery description used in the energy system model matters when trying to evaluate energy or climate policy applied to the transportation sector. It impacts the policy costs but also the technology trajectories chosen at the optimum. Essentially, the balance between energy efficiency and carbon intensity of transport may be affected by the accuracy of the description of the pivotal refining sector. Consequently, increasing this sector accuracy level should not only be motivated by the wish to gain wider quantitative insights on potential evolution of the energy system but also by the wish to improve the robustness of the model outcomes.

Suggested Citation

  • Claire Nicolas & Valérie Saint-Antonin & Stéphane Tchung-Ming, 2014. "(How) does sectoral detail affect the robustness of policy insights from energy system models? The refining sector’s example," Working Papers hal-04141280, HAL.
  • Handle: RePEc:hal:wpaper:hal-04141280
    Note: View the original document on HAL open archive server: https://hal.science/hal-04141280
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04141280/document
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04141280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.