IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04140846.html
   My bibliography  Save this paper

Agent-based Computational Economics: a Methodological Appraisal

Author

Listed:
  • Paola Tubaro

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper is an overview of "Agent-based Computational Economics (ACE)", an emerging approach to the study of decentralized market economies, in methodological perspective. It summarizes similarities and differences with respect to conventional economic models, outlines the unique methodological characteristics of this approach, and discusses its implications for economic methodology as a whole. While ACE rejoins the reflection on the unintended social consequences of purposeful individual action which is constitutive of economics as a discipline, the paper shows that it complements state-of the-art research in experimental and behavioral economics. In particular, the methods and techniques of ACE have reinforced the laboratory finding that fundamental economic results rely less on rational choice theory than is usually assumed, and have provided insight into the importance of market structures and rules in addition to individual choice. In addition, ACE has enlarged the range of inter-individual interactions that are of interest for economists. In this perspective, ACE provides the economist‘s toolbox with valuable supplements to existing economic techniques rather than proposing a radical alternative. Despite some open methodological questions, it has potential for better integration into economics in the future.

Suggested Citation

  • Paola Tubaro, 2009. "Agent-based Computational Economics: a Methodological Appraisal," Working Papers hal-04140846, HAL.
  • Handle: RePEc:hal:wpaper:hal-04140846
    Note: View the original document on HAL open archive server: https://hal.science/hal-04140846
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04140846/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arthur, W Brian, 1991. "Designing Economic Agents that Act Like Human Agents: A Behavioral Approach to Bounded Rationality," American Economic Review, American Economic Association, vol. 81(2), pages 353-359, May.
    2. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    3. Rosaria Conte & Mario Paolucci, 2001. "Intelligent Social Learning," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 4(1), pages 1-3.
    4. Robert Axtell, 2005. "The Complexity of Exchange," Economic Journal, Royal Economic Society, vol. 115(504), pages 193-210, June.
    5. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    6. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    7. Crockett, Sean & Spear, Stephen & Sunder, Shyam, 2008. "Learning competitive equilibrium," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 651-671, July.
    8. Arthur, W Brian, 1993. "On Designing Economic Agents That Behave Like Human Agents," Journal of Evolutionary Economics, Springer, vol. 3(1), pages 1-22, February.
    9. Olivier Barreteau, 2003. "Our Companion Modelling Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(2), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Agent-based computational economics in Milan
      by paolatubaro in Paola Tubaro's Blog on 2010-05-21 03:18:32

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Correa Romar, 2011. "On Concurrent Solutions in Differential Games," Business Systems Research, Sciendo, vol. 2(1), pages 17-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Tubaro, 2011. "Computational Economics," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 10, Edward Elgar Publishing.
    2. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, January.
    3. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    4. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    5. Shu-Heng Chen & Bin-Tzong Chie & Ying-Fang Kao & Ragupathy Venkatachalam, 2019. "Agent-Based Modeling of a Non-tâtonnement Process for the Scarf Economy: The Role of Learning," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 305-341, June.
    6. Marco LiCalzi & Lucia Milone & Paolo Pellizzari, 2011. "Allocative Efficiency and Traders’ Protection Under Zero Intelligence Behavior," Dynamic Modeling and Econometrics in Economics and Finance, in: Herbert Dawid & Willi Semmler (ed.), Computational Methods in Economic Dynamics, pages 5-28, Springer.
    7. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    8. Yoo, Seung Han, 2014. "Learning a population distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 188-201.
    9. Giuseppe Attanasi & Samuele Centorrino & Ivan Moscati, 2011. "Double Auction Equilibrium and Efficiency in a Classroom Experimental Search Market," LERNA Working Papers 11.03.337, LERNA, University of Toulouse.
    10. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    11. Michael Neugart & Matteo G. Richiardi, 2012. "Agent-based models of the labor market," LABORatorio R. Revelli Working Papers Series 125, LABORatorio R. Revelli, Centre for Employment Studies.
    12. Edoardo Gaffeo & Mauro Gallegati & Umberto Gostoli, 2015. "An agent-based “proof of principle” for Walrasian macroeconomic theory," Computational and Mathematical Organization Theory, Springer, vol. 21(2), pages 150-183, June.
    13. Luzius Meisser & C. Friedrich Kreuser, 2017. "An Agent-Based Simulation of the Stolper–Samuelson Effect," Computational Economics, Springer;Society for Computational Economics, vol. 50(4), pages 533-547, December.
    14. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    15. Vincze, János & Varga, Gergely, 2016. "Megtakarítási típusok - egy adaptív-evolúciós megközelítés [Types of saving - an adaptive-evolutionary approach]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 162-187.
    16. Kluger, Brian D. & McBride, Mark E., 2011. "Intraday trading patterns in an intelligent autonomous agent-based stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 79(3), pages 226-245, August.
    17. Shu-Heng Chen & Yi-Lin Hsieh, 2011. "Reinforcement Learning in Experimental Asset Markets," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 109-133.
    18. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Shu-Heng Chan & Shu G. Wang, 2010. "Emergent Complexity in Agent-Based Computational Economics," ASSRU Discussion Papers 1017, ASSRU - Algorithmic Social Science Research Unit.
    20. Schuster, Stephan, 2012. "Applications in Agent-Based Computational Economics," MPRA Paper 47201, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04140846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.