IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04075283.html
   My bibliography  Save this paper

An extension of martingale transport and stability in robust finance

Author

Listed:
  • Benjamin Jourdain

    (CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École des Ponts ParisTech, MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech - Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique)

  • Gudmund Pammer

    (Department of Mathematics - ETH - ETH Zürich - Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich])

Abstract

While many questions in robust finance can be posed in the martingale optimal transport framework or its weak extension, others like the subreplication price of VIX futures, the robust pricing of American options or the construction of shadow couplings necessitate additional information to be incorporated into the optimization problem beyond that of the underlying asset. In the present paper, we take into account this extra information by introducing an additional parameter to the weak martingale optimal transport problem. We prove the stability of the resulting problem with respect to the risk neutral marginal distributions of the underlying asset, thus extending the results in \cite{BeJoMaPa21b}. A key step is the generalization of the main result in \cite{BJMP22} to include the extra parameter into the setting. This result establishes that any martingale coupling can be approximated by a sequence of martingale couplings with specified marginals, provided that the marginals of this sequence converge to those of the original coupling. Finally, we deduce stability of the three previously mentioned motivating examples.

Suggested Citation

  • Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Working Papers hal-04075283, HAL.
  • Handle: RePEc:hal:wpaper:hal-04075283
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04075283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.