IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03941565.html
   My bibliography  Save this paper

Optimal incentives in a limit order book: a SPDE control approach

Author

Listed:
  • Bastien Baldacci
  • Philippe Bergault

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

Abstract

With the fragmentation of electronic markets, exchanges are now competing in order to attract trading activity on their platform. Consequently, they developed several regulatory tools to control liquidity provision / consumption on their liquidity pool. In this paper, we study the problem of an exchange using incentives in order to increase market liquidity. We model the limit order book as the solution of a stochastic partial differential equation (SPDE) as in [12]. The incentives proposed to the market participants are functions of the time and the distance of their limit order to the mid-price. We formulate the control problem of the exchange who wishes to modify the shape of the order book by increasing the volume at specific limits. Due to the particular nature of the SPDE control problem, we are able to characterize the solution with a classic Feynman-Kac representation theorem. Moreover, when studying the asymptotic behavior of the solution, a specific penalty function enables the exchange to obtain closed-form incentives at each limit of the order book. We study numerically the form of the incentives and their impact on the shape of the order book, and analyze the sensitivity of the incentives to the market parameters.

Suggested Citation

  • Bastien Baldacci & Philippe Bergault, 2023. "Optimal incentives in a limit order book: a SPDE control approach," Working Papers hal-03941565, HAL.
  • Handle: RePEc:hal:wpaper:hal-03941565
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03941565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.