IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03892985.html
   My bibliography  Save this paper

Allowing for weak identification when testing GARCH-X type models

Author

Listed:
  • Philipp Ketz

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

In this paper, we use the results in Andrews and Cheng (2012), extended to allow for parameters to be near or at the boundary of the parameter space, to derive the asymptotic distributions of the two test statistics that are used in the two-step (testing) procedure proposed by Pedersen and Rahbek (2019). The latter aims at testing the null hypothesis that a GARCH-X type model, with exogenous covariates (X), reduces to a standard GARCH type model, while allowing the "GARCH parameter" to be unidentified. We then provide a characterization result for the asymptotic size of any test for testing this null hypothesis before numerically establishing a lower bound on the asymptotic size of the two-step procedure at the 5% nominal level. This lower bound exceeds the nominal level, revealing that the two-step procedure does not control asymptotic size. In a simulation study, we show that this finding is relevant for finite samples, in that the two-step procedure can suffer from overrejection in finite samples. We also propose a new test that, by construction, controls asymptotic size and is found to be more powerful than the two-step procedure when the "ARCH parameter" is "very small" (in which case the two-step procedure underrejects).

Suggested Citation

  • Philipp Ketz, 2022. "Allowing for weak identification when testing GARCH-X type models," Working Papers hal-03892985, HAL.
  • Handle: RePEc:hal:wpaper:hal-03892985
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03892985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.