IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03812055.html
   My bibliography  Save this paper

Assessing clustering methods using Shannon's entropy

Author

Listed:
  • Anis Hoayek

    (LIMOS - Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - CNRS - Centre National de la Recherche Scientifique - UCA - Université Clermont Auvergne - INP Clermont Auvergne - Institut national polytechnique Clermont Auvergne - UCA - Université Clermont Auvergne, FAYOL-ENSMSE - Institut Henri Fayol - Mines Saint-Étienne MSE - École des Mines de Saint-Étienne - IMT - Institut Mines-Télécom [Paris], FAYOL-ENSMSE - Département Génie mathématique et industriel - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - Institut Henri Fayol, Mines Saint-Étienne MSE - École des Mines de Saint-Étienne - IMT - Institut Mines-Télécom [Paris])

  • Didier Rullière

    (LIMOS - Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - CNRS - Centre National de la Recherche Scientifique - UCA - Université Clermont Auvergne - INP Clermont Auvergne - Institut national polytechnique Clermont Auvergne - UCA - Université Clermont Auvergne, FAYOL-ENSMSE - Institut Henri Fayol - Mines Saint-Étienne MSE - École des Mines de Saint-Étienne - IMT - Institut Mines-Télécom [Paris], FAYOL-ENSMSE - Département Génie mathématique et industriel - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - Institut Henri Fayol, Mines Saint-Étienne MSE - École des Mines de Saint-Étienne - IMT - Institut Mines-Télécom [Paris])

Abstract

Unsupervised clustering techniques are a valuable source of information for determining how to divide a dataset into subgroups. We present a comprehensive analysis of the quality of these algorithms by defining a clustering fuzziness metric. A statistical test and cluster probabilities corrections are provided based on this metric. Some examples demonstrate how it can be used to compare different clustering algorithms or improve the accuracy of various methods. An application for adjusting the number of clusters is also presented. These results are illustrated using both simulated and real-world data.

Suggested Citation

  • Anis Hoayek & Didier Rullière, 2023. "Assessing clustering methods using Shannon's entropy," Working Papers hal-03812055, HAL.
  • Handle: RePEc:hal:wpaper:hal-03812055
    Note: View the original document on HAL open archive server: https://hal.science/hal-03812055v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03812055v2/document
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03812055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.