IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03134647.html
   My bibliography  Save this paper

The covid-19 crisis: an NLP exploration of the french Twitter feed (February-May 2020)

Author

Listed:
  • Sophie Balech

    (CRIISEA - Centre de Recherche sur les Institutions, l'Industrie et les Systèmes Économiques d'Amiens - UR UPJV 3908 - UPJV - Université de Picardie Jules Verne)

  • C. Benavent
  • M. Calciu
  • Julien Monnot

Abstract

The Covid-19 pandemic offers a spectacular case of disaster management. In this literature, the paradigm of participation is fundamental: the mitigation of the impact of the disaster, the quality of the preparation and the resilience of the society, which facilitate the reconstruction, depend on the participation of the populations. Being able to observe and measure the state of mental health of the population (anxiety, confidence, expectations, ...) and to identify the points of controversy and the content of the discourse, are necessary to support measures designed to encourage this participation. Social media, and in particular Twitter, offer valuable resources for researching this discourse. The objective of this empirical study is to reconstruct a micro history of users' reactions to the pandemic as they share them on social networks. The general method used comes from new processing techniques derived from Natural Language Processing (NLP). Three analysis methods are used to process the corpus: analysis of the temporal evolution of term occurrences; creation of dynamic semantic maps to identify co-occurrences; analysis of topics using the SVM method. The main empirical result is that the mask emerges as a central figure of discourse, at least in the discourse produced by certain social media. The retrospective analysis of the phenomenon allows us to explain what made the mask a focal point not only in conversation, but also in behaviors. Its value resides less in its functional qualities than in its ability to fix attention and organize living conditions under the threat of pandemic.

Suggested Citation

  • Sophie Balech & C. Benavent & M. Calciu & Julien Monnot, 2021. "The covid-19 crisis: an NLP exploration of the french Twitter feed (February-May 2020)," Working Papers hal-03134647, HAL.
  • Handle: RePEc:hal:wpaper:hal-03134647
    Note: View the original document on HAL open archive server: https://hal.science/hal-03134647
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03134647/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Margaret E. Roberts & Brandon M. Stewart & Dustin Tingley & Christopher Lucas & Jetson Leder‐Luis & Shana Kushner Gadarian & Bethany Albertson & David G. Rand, 2014. "Structural Topic Models for Open‐Ended Survey Responses," American Journal of Political Science, John Wiley & Sons, vol. 58(4), pages 1064-1082, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Wankmüller, 2023. "A comparison of approaches for imbalanced classification problems in the context of retrieving relevant documents for an analysis," Journal of Computational Social Science, Springer, vol. 6(1), pages 91-163, April.
    2. Everett, Jeff & Shiraz Rahaman, Abu & Neu, Dean & Saxton, Gregory, 2024. "Letters to the editor, institutional experimentation, and the public accounting professional," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 99(C).
    3. Minchul Lee & Min Song, 2020. "Incorporating citation impact into analysis of research trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1191-1224, August.
    4. Grajzl, Peter & Murrell, Peter, 2021. "A machine-learning history of English caselaw and legal ideas prior to the Industrial Revolution I: generating and interpreting the estimates," Journal of Institutional Economics, Cambridge University Press, vol. 17(1), pages 1-19, February.
    5. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    6. Marcel Fratzscher & Tobias Heidland & Lukas Menkhoff & Lucio Sarno & Maik Schmeling, 2023. "Foreign Exchange Intervention: A New Database," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(4), pages 852-884, December.
    7. Bokyong Shin & Chaitawat Boonjubun, 2021. "Media and the Meanings of Land: A South Korean Case Study," American Journal of Economics and Sociology, Wiley Blackwell, vol. 80(2), pages 381-425, March.
    8. Parijat Chakrabarti & Margaret Frye, 2017. "A mixed-methods framework for analyzing text data: Integrating computational techniques with qualitative methods in demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(42), pages 1351-1382.
    9. Li Tang & Jennifer Kuzma & Xi Zhang & Xinyu Song & Yin Li & Hongxu Liu & Guangyuan Hu, 2023. "Synthetic biology and governance research in China: a 40-year evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5293-5310, September.
    10. Benjamin E. Bagozzi & Daniel Berliner & Zack W. Almquist, 2021. "When does open government shut? Predicting government responses to citizen information requests," Regulation & Governance, John Wiley & Sons, vol. 15(2), pages 280-297, April.
    11. Han, Chunjia & Yang, Mu & Piterou, Athena, 2021. "Do news media and citizens have the same agenda on COVID-19? an empirical comparison of twitter posts," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers 2023-19, CEPII research center.
    13. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    14. Savin, Ivan & Drews, Stefan & van den Bergh, Jeroen, 2021. "Free associations of citizens and scientists with economic and green growth: A computational-linguistics analysis," Ecological Economics, Elsevier, vol. 180(C).
    15. Damani K. White-Lewis & KerryAnn O’Meara & Kiernan Mathews & Nicholas Havey, 2023. "Leaving the Institution or Leaving the Academy? Analyzing the Factors that Faculty Weigh in Actual Departure Decisions," Research in Higher Education, Springer;Association for Institutional Research, vol. 64(3), pages 473-494, May.
    16. Vishnu Baburajan & Jo~ao de Abreu e Silva & Francisco Camara Pereira, 2022. "Open vs Closed-ended questions in attitudinal surveys -- comparing, combining, and interpreting using natural language processing," Papers 2205.01317, arXiv.org.
    17. Ferrara, Federico M. & Masciandaro, Donato & Moschella, Manuela & Romelli, Davide, 2022. "Political voice on monetary policy: Evidence from the parliamentary hearings of the European Central Bank," European Journal of Political Economy, Elsevier, vol. 74(C).
    18. Camilla Salvatore & Silvia Biffignandi & Annamaria Bianchi, 2022. "Corporate Social Responsibility Activities Through Twitter: From Topic Model Analysis to Indexes Measuring Communication Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1217-1248, December.
    19. Mónica D. Oliveira & Inês Mataloto & Panos Kanavos, 2019. "Multi-criteria decision analysis for health technology assessment: addressing methodological challenges to improve the state of the art," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(6), pages 891-918, August.
    20. Grace Skogstad & Matt Wilder, 2019. "Strangers at the gate: the role of multidimensional ideas, policy anomalies and institutional gatekeepers in biofuel policy developments in the USA and European Union," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(3), pages 343-366, September.

    More about this item

    Keywords

    Covid-19; Twitter feed; NLP methods;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03134647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.