IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02896049.html
   My bibliography  Save this paper

Machines and Masterpieces: Predicting Prices in the Art Auction Market

Author

Listed:
  • Mathieu Aubry

    (LIGM - Laboratoire d'Informatique Gaspard-Monge - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - Université Gustave Eiffel)

  • Roman Kraeussl
  • Gustavo Manso
  • Christophe Spaenjers

    (Department of Economics - Tilburg University [Netherlands])

Abstract

We assess the accuracy and usefulness of machine-learning valuations in illiquid real asset markets. We apply neural networks to data on one million painting auctions to price artworks using non-visual and visual characteristics. Our out-of-sample automated valuations predict auction prices dramatically better than standard hedonic regressions. The discrepancies with pre-sale estimates provided by auction house experts correlate with sale outcomes: the more aggressive the auctioneer's pre-sale estimate relative to our valuation, the higher the probability of an unsuccessful auction and the lower the post-acquisition return. Finally, machine learning can detect predictability in auctioneers' "prediction errors".

Suggested Citation

  • Mathieu Aubry & Roman Kraeussl & Gustavo Manso & Christophe Spaenjers, 2020. "Machines and Masterpieces: Predicting Prices in the Art Auction Market," Working Papers hal-02896049, HAL.
  • Handle: RePEc:hal:wpaper:hal-02896049
    DOI: 10.2139/ssrn.3347175
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewelina Plachimowicz & Piotr Wójcik, 2022. "What makes Punks worthy? Valuation of Non-Fungible Tokens based on the CryptoPunks collection using the hedonic pricing method," Working Papers 2022-27, Faculty of Economic Sciences, University of Warsaw.

    More about this item

    Keywords

    asset valuation; auctions; experts; big data; machine learning;
    All these keywords.

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • Z11 - Other Special Topics - - Cultural Economics - - - Economics of the Arts and Literature

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02896049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.