IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02282504.html
   My bibliography  Save this paper

EvaSylv: A user-friendly software to evaluate forestry scenarii including natural risk

Author

Listed:
  • Patrice Loisel

    (MISTEA - Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Guillerme Duvillié

    (GOM - Graphes et Optimisation Mathématique [Bruxelles] - ULB - Université libre de Bruxelles)

  • Denis Barbeau
  • Brigitte Charnomordic

    (MISTEA - Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

Abstract

Forest management relies on the evaluation of silviculture practices. The increase in natural risk due to climate change makes it necessary to consider evaluation criteria that take natural risk into account. Risk integration in existing software requires advanced programming skills. We propose a user-friendly software to simulate even-aged and monospecific forest at the stand level, in order to evaluate and optimize forest management. The software gives the possibility to run management scenarii with or without considering the impact of natural risk. The control variables are the dates and rates of thinning and the cutting age. The risk model is based on a Poisson processus. The Faustmann approach, including tree damage risk, is used to evaluate future benefits, economic or ecosystem services. It relies on the calculation of expected values, for which a dedicated mathematical development has been done. The optimized criteria used to evaluate the various scenarii are the Faustmann value and the Averaged yield value. We illustrate the approach and the software on two case studies: economic optimization of a beech stand and carbon sequestration optimization of a pine stand. Software interface makes it easy for users to write their own (growth-tree damage-economic) models without advanced programming skills. The possibility to run management scenarii with/without considering the impact of natural risk may contribute improving silviculture guidelines and adapting them to climate change. We propose future lines of research and improvement.

Suggested Citation

  • Patrice Loisel & Guillerme Duvillié & Denis Barbeau & Brigitte Charnomordic, 2019. "EvaSylv: A user-friendly software to evaluate forestry scenarii including natural risk," Working Papers hal-02282504, HAL.
  • Handle: RePEc:hal:wpaper:hal-02282504
    Note: View the original document on HAL open archive server: https://hal.science/hal-02282504
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02282504/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Loisel, Patrice, 2014. "Impact of storm risk on Faustmann rotation," Forest Policy and Economics, Elsevier, vol. 38(C), pages 191-198.
    2. Patrice, Loisel, 2011. "Faustmann rotation and population dynamics in the presence of a risk of destructive events," Journal of Forest Economics, Elsevier, vol. 17(3), pages 235-247, August.
    3. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    4. Price, Colin & Willis, Rob, 2011. "The multiple effects of carbon values on optimal rotation," Journal of Forest Economics, Elsevier, vol. 17(3), pages 298-306, August.
    5. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loisel, Patrice, 2020. "Under the risk of destructive event, are there differences between timber income based and carbon sequestration based silviculture?," Forest Policy and Economics, Elsevier, vol. 120(C).
    2. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    3. Rakotoarison, Hanitra & Loisel, Patrice, 2016. "The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France," MPRA Paper 85114, University Library of Munich, Germany.
    4. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    5. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2020. "Insurance and Forest Rotation Decisions Under Storm Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 347-367, July.
    6. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    7. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.
    8. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.
    9. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2022. "Ambiguity, value of information and forest rotation decision under storm risk," Working Papers of BETA 2022-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    10. Susaeta, Andres, 2018. "On Pressler’s indicator rate formula under the generalized Reed model," Journal of Forest Economics, Elsevier, vol. 30(C), pages 32-37.
    11. Moeller, Jonas C. & Susaeta, Andres & Deegen, Peter & Sharma, Ajay, 2024. "Profitability analysis of southern plantations through timber alone or timber and carbon integration in pine-sweetgum mixes," Forest Policy and Economics, Elsevier, vol. 161(C).
    12. Loisel, Patrice, 2014. "Impact of storm risk on Faustmann rotation," Forest Policy and Economics, Elsevier, vol. 38(C), pages 191-198.
    13. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    14. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    15. Susaeta, Andres & Carney, Tyler, 2023. "Optimal regimes of prescribed burning in forest plantations in the presence of risk of wildfires in the southeastern United States," Forest Policy and Economics, Elsevier, vol. 151(C).
    16. Halbritter, Andreas & Deegen, Peter & Susaeta, Andres, 2020. "An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands," Forest Policy and Economics, Elsevier, vol. 118(C).
    17. Félix Bastit & David W. Shanafelt & Marielle Brunette, 2023. "Stability and resilience of a forest bio-economic equilibrium under natural disturbances," Working Papers of BETA 2023-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    18. O’Donoghue, Cathal & O’Fatharta, Eoin & Geoghegan, Cathal & Ryan, Mary, 2024. "Farmland afforestation: Forest optimal rotation ages across discrete optimisation objectives," Land Use Policy, Elsevier, vol. 139(C).
    19. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    20. McTaggart, Ewan & Megiddo, Itamar & Kleczkowski, Adam, 2023. "The effect of pests and pathogens on forest harvesting regimes: A bioeconomic model," Ecological Economics, Elsevier, vol. 209(C).

    More about this item

    Keywords

    simulation; storm risk; stand level; optimization; forest management; Decision Support System; natural risk; 29; Faustmann;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02282504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.