IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02058253.html
   My bibliography  Save this paper

Subgraph Sampling Methods for Social Networks: The Good, the Bad, and the Ugly

Author

Listed:
  • Peter Ebbes

    (HEC Paris - Ecole des Hautes Etudes Commerciales)

  • Zan Huang
  • Arvind Rangaswamy

Abstract

The trajectories of social processes (e.g., peer pressure, imitation, and assimilation) that take place on social networks depend on the structure of those networks. Thus, to understand a social process or to predict the associated outcomes accurately, marketers would need good knowledge of the social network structure. However, many social networks of relevance to marketers are large, complex, or hidden, making it prohibitively expensive to map out an entire social network. Instead, marketers often need to work with a sample (i.e., a subgraph) of a social network. In this paper we evaluate the efficacy of nine different sampling methods for generating subgraphs that recover four structural characteristics of importance to marketers, namely, the distributions of degree, clustering coefficient, betweenness centrality, and closeness centrality, which are important for understanding how social network structure influences outcomes of processes that take place on the network. Via extensive simulations, we find that sampling methods differ substantially in their ability to recover network characteristics. Traditional sampling procedures, such as random node sampling, result in poor subgraphs. When the focus is on understanding local network effects (e.g., peer influence) then forest fire sampling with a medium burn rate performs the best, i.e., it is most effective for recovering the distributions of degree and clustering coefficient. When the focus is on global network effects (e.g., speed of diffusion, identifying influential nodes, or the "multiplier" effects of network seeding), then random-walk sampling (i.e., forest-fire sampling with a low burn rate) performs the best, and it is most effective for recovering the distributions of betweenness and closeness centrality. Further, we show that accurate recovery of social network structure in a sample is important for inferring the properties of a network process, when one observes only the process in the sampled network. We validate our findings on four different real-world networks, including a Facebook network and a co-authorship network, and conclude with recommendations for practice.

Suggested Citation

  • Peter Ebbes & Zan Huang & Arvind Rangaswamy, 2010. "Subgraph Sampling Methods for Social Networks: The Good, the Bad, and the Ugly," Working Papers hal-02058253, HAL.
  • Handle: RePEc:hal:wpaper:hal-02058253
    DOI: 10.2139/ssrn.1580074
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaniv Dover & Jacob Goldenberg & Daniel Shapira, 2012. "Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data," Marketing Science, INFORMS, vol. 31(4), pages 689-712, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02058253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.