IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01668975.html
   My bibliography  Save this paper

Data and methods for A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data
[Données et méthodes pour "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data"]

Author

Listed:
  • Antoine Lejay

    (TOSCA - TO Simulate and CAlibrate stochastic models - CRISAM - Inria Sophia Antipolis - Méditerranée - Inria - Institut National de Recherche en Informatique et en Automatique - IECL - Institut Élie Cartan de Lorraine - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique, IECL - Institut Élie Cartan de Lorraine - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique)

  • Paolo Pigato

    (LAMA - Laboratoire d'Analyse et de Mathématiques Appliquées - UPEM - Université Paris-Est Marne-la-Vallée - BEZOUT - Fédération de Recherche Bézout - CNRS - Centre National de la Recherche Scientifique - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12 - CNRS - Centre National de la Recherche Scientifique)

Abstract

This technical report presents the methodology and the numerical results for 21 stock prices under the assumption they follow a Drifted Geometric Oscillating Brownian motion model. Such a model takes leverage and mean-reversion effects into account. This report completes the article "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data"

Suggested Citation

  • Antoine Lejay & Paolo Pigato, 2017. "Data and methods for A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data [Données et méthodes pour "A threshold model for local volatilit," Working Papers hal-01668975, HAL.
  • Handle: RePEc:hal:wpaper:hal-01668975
    Note: View the original document on HAL open archive server: https://inria.hal.science/hal-01668975v3
    as

    Download full text from publisher

    File URL: https://inria.hal.science/hal-01668975v3/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    2. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Working Papers hal-01669082, HAL.
    3. Luis H. R. Alvarez E. & Paavo Salminen, 2017. "Timing in the presence of directional predictability: optimal stopping of skew Brownian motion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Working Papers hal-01669082, HAL.
    2. Manuel L. Esquível & Nadezhda P. Krasii & Pedro P. Mota & Victoria V. Shamraeva, 2023. "Coupled Price–Volume Equity Models with Auto-Induced Regime Switching," Risks, MDPI, vol. 11(11), pages 1-20, November.
    3. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    2. Héctor Araya & Meryem Slaoui & Soledad Torres, 2022. "Bayesian inference for fractional Oscillating Brownian motion," Computational Statistics, Springer, vol. 37(2), pages 887-907, April.
    3. Andrey Itkin & Alexander Lipton & Dmitry Muravey, 2021. "Multilayer heat equations and their solutions via oscillating integral transforms," Papers 2112.00949, arXiv.org, revised Dec 2021.
    4. Paolo Pigato, 2019. "Extreme at-the-money skew in a local volatility model," Finance and Stochastics, Springer, vol. 23(4), pages 827-859, October.
    5. Manuel L. Esquível & Nadezhda P. Krasii & Pedro P. Mota & Victoria V. Shamraeva, 2023. "Coupled Price–Volume Equity Models with Auto-Induced Regime Switching," Risks, MDPI, vol. 11(11), pages 1-20, November.
    6. Haoyan Zhang & Yingxu Tian, 2022. "Hitting Time Problems of Sticky Brownian Motion and Their Applications in Optimal Stopping and Bond Pricing," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1237-1251, June.
    7. Antoine Lejay, 2018. "Estimation of the bias parameter of the skew random walk and application to the skew Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 539-551, October.
    8. Antoine Lejay & Paolo Pigato, 2020. "Maximum likelihood drift estimation for a threshold diffusion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 609-637, September.
    9. Dingwen Zhang, 2024. "Determining the Number and Values of Thresholds for Multi-regime Threshold Ornstein–Uhlenbeck Processes," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3581-3626, November.
    10. Lempa, Jukka & Mordecki, Ernesto & Salminen, Paavo, 2024. "Diffusion spiders: Green kernel, excessive functions and optimal stopping," Stochastic Processes and their Applications, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01668975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.