IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01017157.html
   My bibliography  Save this paper

Indifference fee rate for variable annuities

Author

Listed:
  • Etienne Chevalier

    (LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique)

  • Thomas Lim

    (LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique)

  • Ricardo Romo Roméro

    (LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper, we work on indifference valuation of variable annuities and give a computation method for indifference fees. We focus on the guaranteed minimum death benefits and the guaranteed minimum living benefits and allow the policyholder to make withdrawals. We assume that the fees are continuously payed and that the fee rate is fixed at the beginning of the contract. Following indifference pricing theory, we define indifference fee rate for the insurer as a solution of an equation involving two stochastic control problems. Relating these problems to backward stochastic differential equations with jumps, we provide a verification theorem and give the optimal strategies associated to our control problems. From these, we derive a computation method to get indifference fee rates. We conclude our work with numerical illustrations of indifference fees sensibilities with respect to parameters.

Suggested Citation

  • Etienne Chevalier & Thomas Lim & Ricardo Romo Roméro, 2014. "Indifference fee rate for variable annuities," Working Papers hal-01017157, HAL.
  • Handle: RePEc:hal:wpaper:hal-01017157
    DOI: 10.1080/1350486X.2016.1243011
    Note: View the original document on HAL open archive server: https://hal.science/hal-01017157
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01017157/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/1350486X.2016.1243011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    2. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities 1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    3. repec:dau:papers:123456789/9697 is not listed on IDEAS
    4. A. C. Belanger & P. A. Forsyth & G. Labahn, 2009. "Valuing the Guaranteed Minimum Death Benefit Clause with Partial Withdrawals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 451-496.
    5. Siu, Tak Kuen, 2005. "Fair valuation of participating policies with surrender options and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 533-552, December.
    6. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christophette Blanchet-Scalliet & Diana Dorobantu & Yahia Salhi, 2016. "A Model-Point Approach to Indifference Pricing of Life Insurance Portfolios with Dependent Lives," Working Papers hal-01258645, HAL.
    2. Christophette Blanchet-Scalliet & Diana Dorobantu & Yahia Salhi, 2019. "A Model-Point Approach to Indifference Pricing of Life Insurance Portfolios with Dependent Lives," Post-Print hal-01258645, HAL.
    3. Christophette Blanchet-Scalliet & Diana Dorobantu & Yahia Salhi, 2019. "A Model-Point Approach to Indifference Pricing of Life Insurance Portfolios with Dependent Lives," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 423-448, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophette Blanchet-Scalliet & Etienne Chevalier & Idris Kharroubi & Thomas Lim, 2015. "Max–Min Optimization Problem For Variable Annuities Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-35, December.
    2. Christophette Blanchet-Scalliet & Etienne Chevalier & Idriss Kharroubi & Thomas Lim, 2015. "Max-Min optimization problem for Variable Annuities pricing," Post-Print hal-01017160, HAL.
    3. Lukasz Delong, 2010. "Applications of time-delayed backward stochastic differential equations to pricing, hedging and portfolio management," Papers 1005.4417, arXiv.org, revised Jan 2011.
    4. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    5. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    6. Shen, Yang & Sherris, Michael & Ziveyi, Jonathan, 2016. "Valuation of guaranteed minimum maturity benefits in variable annuities with surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 127-137.
    7. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    8. Delong, Łukasz, 2014. "Pricing and hedging of variable annuities with state-dependent fees," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 24-33.
    9. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Pricing annuity guarantees under a double regime-switching model," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 62-78.
    10. M. Mania & R. Tevzadze, 2008. "Backward Stochastic PDEs related to the utility maximization problem," Papers 0806.0240, arXiv.org.
    11. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    12. Yushi Hamaguchi, 2019. "Time-inconsistent consumption-investment problems in incomplete markets under general discount functions," Papers 1912.01281, arXiv.org, revised Mar 2021.
    13. Thibaut Mastrolia, 2017. "Moral hazard in welfare economics: on the advantage of Planner's advices to manage employees' actions," Papers 1706.01254, arXiv.org.
    14. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    15. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.
    16. Mastrolia, Thibaut, 2018. "Density analysis of non-Markovian BSDEs and applications to biology and finance," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 897-938.
    17. Bernard, Carole & MacKay, Anne & Muehlbeyer, Max, 2014. "Optimal surrender policy for variable annuity guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 116-128.
    18. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    19. Min Dai & Yuchao Dong & Yanwei Jia & Xun Yu Zhou, 2023. "Learning Merton's Strategies in an Incomplete Market: Recursive Entropy Regularization and Biased Gaussian Exploration," Papers 2312.11797, arXiv.org.

    More about this item

    Keywords

    Variable annuities; indifference pricing; stochastic control; utility maximization; backward stochastic differential equation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01017157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.