IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00916676.html
   My bibliography  Save this paper

A stochastic control approach to robust duality in utility maximization

Author

Listed:
  • Bernt Øksendal

    (UiO - University of Oslo)

  • Agnès Sulem

    (MATHRISK - Mathematical Risk handling - Inria Paris-Rocquencourt - Inria - Institut National de Recherche en Informatique et en Automatique - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech)

Abstract

A celebrated financial application of convex duality theory gives an explicit relation between the following two quantities: \begin{myenumerate} \item The optimal terminal wealth $X^*(T) : = X_{\varphi^*}(T)$ of the classical problem to maximize the expected $U$-utility of the terminal wealth $X_{\varphi}(T)$ generated by admissible portfolios $\varphi(t); 0 \leq t \leq T$ in a market with the risky asset price process modeled as a semimartingale \item The optimal scenario $\frac{dQ^*}{dP}$ of the dual problem to minimize the expected $V$-value of $\frac{dQ}{dP}$ over a family of equivalent local martingale measures $Q$. Here $V$ is the convex dual function of the concave function $U$. \end{myenumerate} In this paper we consider markets modeled by Itô-Lévy processes, and in the first part we give a new proof of the above result in this setting, based on the maximum principle in stochastic control theory. An advantage with our approach is that it also gives an explicit relation between the optimal portfolio $\varphi^*$ and the optimal measure $Q^*$, in terms of backward stochastic differential equations. In the second part we present robust (model uncertainty) versions of the optimization problems in (i) and (ii), and we prove a relation between them. In particular, we show explicitly how to get from the solution of one of the problems to the solution of the other. We illustrate the results with explicit examples.

Suggested Citation

  • Bernt Øksendal & Agnès Sulem, 2013. "A stochastic control approach to robust duality in utility maximization," Working Papers hal-00916676, HAL.
  • Handle: RePEc:hal:wpaper:hal-00916676
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusong Li & Harry Zheng, 2015. "Constrained Quadratic Risk Minimization via Forward and Backward Stochastic Differential Equations," Papers 1512.04583, arXiv.org, revised May 2017.
    2. Gregor Heyne & Michael Kupper & Ludovic Tangpi, 2016. "Portfolio Optimization Under Nonlinear Utility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00916676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.