IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00601871.html
   My bibliography  Save this paper

Multifractality of US Dollar/Deutsche Mark Exchange Rates

Author

Listed:
  • Laurent-Emmanuel Calvet

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Benoît B. Mandelbrot

    (Department of Mathematics - Yale University [New Haven], IBM Thomas J. Watson Research Center - IBM)

  • Adlai J. Fisher

    (Sauder - Sauder School of Business [British Columbia] - UBC - University of British Columbia)

Abstract

This paper presents the first empirical investigation of the Multifractal Model of Asset Returns ("MMAR"). The MMAR, developed in Mandelbrot, Fisher, and Calvet (1997), is an alternative to ARCH-type representations for modelling temporal heterogeneity in financial returns. Typically, researchers introduce temporal heterogeneity through time-varying conditional second moments in a discrete time framework. Multifractality introduces a new source of heterogeneity through time-varying local regularity in the price path. The concept of local Holder exponent describes local regularity. Multifractal processes bridge the gap between locally Gaussian (Ito) diffusions and jump-diffusions by allowing a multiplicity of Holder exponents. This paper investigates multifractality in Deutschemark/US Dollar currency exchange rates. After finding evidence of multifractal scaling, we show how to estimate the multifractal spectrum via the Legendre transform. The scaling laws found in the data are replicated in simulations. Further simulation experiments test whether alternative representations, such as FIGARCH, are likely to replicate the multifractal signature of the Deutschemark/US Dollar data. On the basis of this evidence, the MMAR hypothesis appears more likely. Overall, the MMAR is quite successful in uncovering a previously unseen empirical regularity. Additionally, the model generates realistic sample paths, and opens the door to new theoretical and applied approaches to asset pricing and risk valuation. We conclude by advocating further empirical study of multifractality in financial data, along with more intensive study of estimation techniques and inference procedures.

Suggested Citation

  • Laurent-Emmanuel Calvet & Benoît B. Mandelbrot & Adlai J. Fisher, 2011. "Multifractality of US Dollar/Deutsche Mark Exchange Rates," Working Papers hal-00601871, HAL.
  • Handle: RePEc:hal:wpaper:hal-00601871
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00601871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.