IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00580988.html
   My bibliography  Save this paper

Accurate and Robust Indirect Inference for Diffusion Models

Author

Listed:
  • Veronika Czellar

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Elvezio Ronchetti

    (Department of Econometrics - UNIGE - Université de Genève = University of Geneva)

Abstract

Indirect inference (Smith, 1993; Gouriéroux, Monfort and Renault, 1993) is a simulation-based estimation method dealing with econometric models whose likelihood function is intractable. Typical examples are diffusion models described by stochastic differential equations. A potential problem that arises when estimating a diffusion model is the possible model misspecification which can lead to biased estimators and misleading test results. To correct the bias due to model misspecification, Genton and Ronchetti (2003) proposed robust indirect inference. The standard asymptotic approximation to the finite sample distribution of the robust indirect estimators and tests, however, can be very poor and can lead to misleading inference. To improve the finite sample accuracy, we propose in this paper an optimal choice of the auxiliary discretized model and a new test based on asymptotically equivalent M-estimators of the robust indirect estimators. We apply the robust indirect saddlepoint tests using an optimal choice of discretization to various contaminated diffusion models and we illustrate the gain in finite sample accuracy when using the new technique.

Suggested Citation

  • Veronika Czellar & Elvezio Ronchetti, 2011. "Accurate and Robust Indirect Inference for Diffusion Models," Working Papers hal-00580988, HAL.
  • Handle: RePEc:hal:wpaper:hal-00580988
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00580988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.