IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00489803.html
   My bibliography  Save this paper

Two stock options at the races: Black-Scholes forecasts

Author

Listed:
  • Gleb Oshanin

    (LPTMC - Laboratoire de Physique Théorique de la Matière Condensée - UPMC - Université Pierre et Marie Curie - Paris 6 - CNRS - Centre National de la Recherche Scientifique, ISCP - Interdisciplinary Scientific Center Poncelet - IUM - Independent University of Moscow - CNRS - Centre National de la Recherche Scientifique)

  • Gregory Schehr

    (LPT - Laboratoire de Physique Théorique d'Orsay [Orsay] - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique)

Abstract

Suppose one buys two very similar stocks and is curious about how much, after some time T, one of them will contribute to the overall asset, expecting, of course, that it should be around 1/2 of the sum. Here we examine this question within the classical Black and Scholes (BS) model, focusing on the evolution of the probability density function P(w) of a random variable w = a_T^{(1)}/(a_T^{(1)} + a_T^{(2)}) where a_T^{(1)} and a_T^{(2)} are the values of two (either European- or the Asian-style) options produced by two absolutely identical BS stochastic equations. We show that within the realm of the BS model the behavior of P(w) is surprisingly different from common-sense-based expectations. For the European-style options P(w) always undergoes a transition, (when T approaches a certain threshold value), from a unimodal to a bimodal form with the most probable values being close to 0 and 1, and, strikingly, w =1/2 being the least probable value. This signifies that the symmetry between two options spontaneously breaks and just one of them completely dominates the sum. For path-dependent Asian-style options we observe the same anomalous behavior, but only for a certain range of parameters. Outside of this range, P(w) is always a bell-shaped function with a maximum at w = 1/2.

Suggested Citation

  • Gleb Oshanin & Gregory Schehr, 2010. "Two stock options at the races: Black-Scholes forecasts," Working Papers hal-00489803, HAL.
  • Handle: RePEc:hal:wpaper:hal-00489803
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00489803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.