IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00468072.html
   My bibliography  Save this paper

Portfolio optimization in a default model under full/partial information

Author

Listed:
  • Thomas Lim

    (ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise, LAP - Laboratoire Analyse et Probabilités - UEVE - Université d'Évry-Val-d'Essonne)

  • Marie-Claire Quenez

    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper, we consider a financial market with assets exposed to some risks inducing jumps in the asset prices, and which can still be traded after default times. We use a default-intensity modeling approach, and address in this incomplete market context the problem of maximization of expected utility from terminal wealth for logarithmic, power and exponential utility functions. We study this problem as a stochastic control problem both under full and partial information. Our contribution consists in showing that the optimal strategy can be obtained by a direct approach for the logarithmic utility function, and the value function for the power utility function can be determined as the minimal solution of a backward stochastic differential equation. For the partial information case, we show how the problem can be divided into two problems: a filtering problem and an optimization problem. We also study the indifference pricing approach to evaluate the price of a contingent claim in an incomplete market and the information price for an agent with insider information.

Suggested Citation

  • Thomas Lim & Marie-Claire Quenez, 2010. "Portfolio optimization in a default model under full/partial information," Working Papers hal-00468072, HAL.
  • Handle: RePEc:hal:wpaper:hal-00468072
    Note: View the original document on HAL open archive server: https://hal.science/hal-00468072v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00468072v2/document
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00468072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.