IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-01744085.html
   My bibliography  Save this paper

From degrees of belief to binary beliefs: Lessons from judgment-aggregation theory

Author

Listed:
  • Franz Dietrich

    (CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Christian List

    (LSE - London School of Economics and Political Science)

Abstract

What is the relationship between degrees of belief and binary beliefs? Can the latter be expressed as a function of the former – a so-called "belief-binarization rule" – without running into difficulties such as the lottery paradox? We show that this problem can be usefully analyzed from the perspective of judgment-aggregation theory. Although some formal similarities between belief binarization and judgment aggregation have been noted before, the connection between the two problems has not yet been studied in full generality. We seek to fill this gap. This paper is organized around a baseline impossibility theorem, which we use to map out the space of possible solutions to the belief-binarization problem. Our theorem shows that, except in limiting cases, there exists no belief-binarization rule satisfying four initially plausible desiderata. Surprisingly, this result is a direct corollary of the judgmentaggregation variant of Arrow's classic impossibility theorem in social choice theory.

Suggested Citation

  • Franz Dietrich & Christian List, 2018. "From degrees of belief to binary beliefs: Lessons from judgment-aggregation theory," PSE-Ecole d'économie de Paris (Postprint) halshs-01744085, HAL.
  • Handle: RePEc:hal:pseptp:halshs-01744085
    DOI: 10.5840/jphil2018115516
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franz Dietrich, 2021. "Categorical versus graded beliefs," Documents de travail du Centre d'Economie de la Sorbonne 21032, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Franz Dietrich & Christian List, 2019. "The relation between degrees of belief and binary beliefs: A general impossibility theorem," Documents de travail du Centre d'Economie de la Sorbonne 19001, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Franz Dietrich & Christian List, 2019. "The relation between degrees of belief and binary beliefs: A general impossibility theorem," Documents de travail du Centre d'Economie de la Sorbonne 19001, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Minkyung Wang, 2024. "Aggregating individual credences into collective binary beliefs: an impossibility result," Theory and Decision, Springer, vol. 97(1), pages 39-66, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-01744085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.