IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-03590388.html
   My bibliography  Save this paper

Covariance Versus Precision Matrix Estimation for Efficient Asset Allocation

Author

Listed:
  • Marc Senneret
  • Yannick Malevergne

    (COACTIS - COnception de l'ACTIon en Situation - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne)

  • Patrice Abry

    (Phys-ENS - Laboratoire de Physique de l'ENS Lyon - ENS de Lyon - École normale supérieure de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Gerald Perrin
  • Laurent Jaffres

Abstract

No abstract is available for this item.

Suggested Citation

  • Marc Senneret & Yannick Malevergne & Patrice Abry & Gerald Perrin & Laurent Jaffres, 2016. "Covariance Versus Precision Matrix Estimation for Efficient Asset Allocation," Post-Print halshs-03590388, HAL.
  • Handle: RePEc:hal:journl:halshs-03590388
    DOI: 10.1109/JSTSP.2016.2577546
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Stolfi & Mauro Bernardi & Davide Vergni, 2022. "Robust estimation of time-dependent precision matrix with application to the cryptocurrency market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    2. Nadège Ribau-Peltre & Pascal Damel & An Lethi, 2018. "A methodology to avoid over-diversification of funds of equity funds An implementation case study for equity funds of funds in bull markets," Post-Print hal-03027770, HAL.
    3. László PáL, 2022. "Asset Allocation Strategies Using Covariance Matrix Estimators," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 10(1), pages 133-144, September.
    4. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    5. Jack Jewson & Li Li & Laura Battaglia & Stephen Hansen & David Rossell & Piotr Zwiernik, 2022. "Graphical model inference with external network data," CeMMAP working papers 20/22, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-03590388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.