IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02926531.html
   My bibliography  Save this paper

Le Data-Mining et l’alternative modèles classiques / réseaux neuronaux

Author

Listed:
  • Andrew Ainslie

    (Université de Chicago)

  • Xavier Dreze

    (Université de Californie du Sud)

Abstract

L'extraction de données ("Data-Mining", littéralement "Forage de Données") est une nouvelle façon de tirer des informations de grosses bases de données qui gagne actuellement la faveur de grandes entreprises. Après avoir décrit le processus d'extraction de données, les auteurs proposent une méthodologie permettant de combiner les techniques d'extraction de données et l'analyse plus traditionnelle de régression, afin de parvenir à une meilleure compréhension des informations contenues dans une base de données d'entreprise. Deux exemples, l'un tiré de l'industrie automobile et l'autre de l'industrie télévisuelle, viennent illustrer ces concepts.

Suggested Citation

  • Andrew Ainslie & Xavier Dreze, 1996. "Le Data-Mining et l’alternative modèles classiques / réseaux neuronaux," Post-Print halshs-02926531, HAL.
  • Handle: RePEc:hal:journl:halshs-02926531
    DOI: 10.7193/DM.007.75.83
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02926531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.