IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02094622.html
   My bibliography  Save this paper

Approximate Pure Nash Equilibria in Weighted Congestion Games

Author

Listed:
  • Ioannis Caragiannis

    (CTI - Computer Technology Institute - Computer Technology Institute)

  • Angelo Fanelli

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

  • Nick Gravin

    (NTU - Nanayang Technological University)

  • Alexander Skopalik

    (TU Dortmund University, Germany)

Abstract

We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of pure Nash equilibria is guaranteed by a potential function argument. Unfortunately, this proof of existence is inefficient and computing pure Nash equilibria in such games is a PLS-hard problem even when all players have unit weights. The situation gets worse when superlinear (e.g., quadratic) latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and pure Nash equilibria may not even exist. Given these obstacles, we consider approximate pure Nash equilibria as alternative solution concepts. A ρ--approximate pure Nash equilibrium is a state of a (weighted congestion) game from which no player has any incentive to deviate in order to improve her cost by a multiplicative factor higher than ρ. Do such equilibria exist for small values of ρ? And if so, can we compute them efficiently?We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an "approximation" of such games by a new class of potential games that we call Ψ-games. This allows us to show that these games have d!-approximate pure Nash equilibria, where d is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate pure Nash equilibria when d is a constant. For games with linear latency functions, the approximation guarantee is 3+√5/2 + Oγ for arbitrarily small γ > 0; for latency functions with maximum degree d≥ 2, it is d2d+o(d). The running time is polynomial in the number of bits in the representation of the game and 1/γ. As a byproduct of our techniques, we also show the following interesting structural statement for weighted congestion games with polynomial latency functions of maximum degree d ≥ 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)-approximate pure Nash equilibrium exist and can be efficiently identified in such games as long as d is a constant.To the best of our knowledge, these are the first positive algorithmic results for approximate pure Nash equilibria in weighted congestion games. Our techniques significantly extend our recent work on unweighted congestion games through the use of Ψ-games. The concept of approximating nonpotential games by potential ones is interesting in itself and might have further applications.

Suggested Citation

  • Ioannis Caragiannis & Angelo Fanelli & Nick Gravin & Alexander Skopalik, 2015. "Approximate Pure Nash Equilibria in Weighted Congestion Games," Post-Print halshs-02094622, HAL.
  • Handle: RePEc:hal:journl:halshs-02094622
    DOI: 10.1145/2614687
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian Drees & Matthias Feldotto & Sören Riechers & Alexander Skopalik, 2019. "Pure Nash equilibria in restricted budget games," Journal of Combinatorial Optimization, Springer, vol. 37(2), pages 620-638, February.
    2. Matthias Feldotto & Lennart Leder & Alexander Skopalik, 2018. "Congestion games with mixed objectives," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1145-1167, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02094622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.