IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01592736.html
   My bibliography  Save this paper

Measuring risks in the tail: The extreme VaR and its confidence interval

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne, IPAG Paris)

  • Bertrand Hassani

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Kehan Li

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Labex ReFi - UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

Contrary to the current regulatory trend regarding extreme risks, the purpose of this paper is to emphasize the necessity of considering the Value-at-Risk (VaR) with extreme confidence levels like 99.9%, as an alternative way of measuring risks in the "extreme tail". Although the mathematical definition of the extreme VaR is trivial, its computation is challenging in practice, because the uncertainty of the extreme VaR may not be negligible for a finite amount of data. We begin to build confidence intervals around the unknown VaR. We build them using two different approaches, the first one uses the asymptotic Gaussian result and the second saddlepoint approach, the latter proves to be more robust when we use finite samples. We compare our approach with other methodologies which are based on bootstrapping techniques, focusing on the estimation of the extreme quantiles of a distribution. Finally, we apply these confidence intervals to perform a stress testing exercice with historical stock returns during the financial crisis, in order to identify potential violations of the VaR during periods of turmoil on financial markets.

Suggested Citation

  • Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Measuring risks in the tail: The extreme VaR and its confidence interval," Post-Print halshs-01592736, HAL.
  • Handle: RePEc:hal:journl:halshs-01592736
    DOI: 10.3233/RDA-170128
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01592736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.