IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01101975.html
   My bibliography  Save this paper

Semiconductor industry cycles: Explanatory factors and forecasting

Author

Listed:
  • Mathilde Aubry

    (METIS - Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols - UPMC - Université Pierre et Marie Curie - Paris 6 - EPHE - École Pratique des Hautes Études - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Patricia Renou-Maissant

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique, EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper aims to suggest the best forecasting model for the semiconductor market. A wide range of alternative modern econometric modeling approaches have been implemented, and a large variety of criteria and tests have been employed to assess the out-of-sample forecasting accuracy at various horizons. The results suggest that if a VECM can be an interesting source of information, the Bayesian models are superior forecasting tools compared to univariate and unrestricted VAR models. However, for decision makers a spectral method could be a useful tool, which can be easily implemented. In addition, MS-AR models make it possible to obtain valuable forecasts on turning-points in order to adjust the programming of heavy capital and research investments.

Suggested Citation

  • Mathilde Aubry & Patricia Renou-Maissant, 2014. "Semiconductor industry cycles: Explanatory factors and forecasting," Post-Print halshs-01101975, HAL.
  • Handle: RePEc:hal:journl:halshs-01101975
    DOI: 10.1016/j.econmod.2014.02.039
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Hsien Liu & Shu-Shih Weng, 2018. "On predicting the semiconductor industry cycle: a Bayesian model averaging approach," Empirical Economics, Springer, vol. 54(2), pages 673-703, March.
    2. Li, Hongkuan & He, Haiyan & Shan, Jiefei & Cai, Jingjing, 2019. "Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 136-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01101975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.