IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00199345.html
   My bibliography  Save this paper

Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system

Author

Listed:
  • D. Bosq

    (LSTA - Laboratoire de Statistique Théorique et Appliquée - UPMC - Université Pierre et Marie Curie - Paris 6 - CNRS - Centre National de la Recherche Scientifique)

  • Dominique Guegan

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique)

Abstract

Let (Xt), Image be Image valued stochastic process defined by a discrete time dynamical system as Xt = phi(Xt−1, T = 1,2,..., where phi is some nonlinear function preserving a probability measure say μ, we estimate phi and the density -f of μ without using special condition on the analytical form of phi, with nonparametric methods and some convergence rates are given.

Suggested Citation

  • D. Bosq & Dominique Guegan, 1995. "Nonparametric estimation of the chaotic function and the invariant measure of a dynamical system," Post-Print halshs-00199345, HAL.
  • Handle: RePEc:hal:journl:halshs-00199345
    DOI: 10.1016/0167-7152(94)00223-U
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Gourieroux & Joanna Jasiak, 1999. "Nonlinear Innovations and Impulse Response," Working Papers 99-44, Center for Research in Economics and Statistics.
    2. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01244239, HAL.
    4. Dominique Guegan & Guillaume Leorat, 1997. "Consistent estimation to determine the embedding dimension in financial data; with an application to the dollar/deutschmark exchange rate," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 231-242.
    5. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Post-Print halshs-01244239, HAL.
    6. Youri Davydov & Ričardas Zitikis, 2007. "Deterministic Noises that can be Statistically Distinguished from the Random Ones," Statistical Inference for Stochastic Processes, Springer, vol. 10(2), pages 165-179, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00199345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.