IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00196448.html
   My bibliography  Save this paper

A new decomposition theorem for Berge graphs

Author

Listed:
  • Nicolas Trotignon

    (CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

A hole in a graph is an induced cycle on at least four vertices. A graph is Berge if it has no odd hole and if its complement has no odd hole. In 2002, Chudnovsky, Robertson, Seymour and Thomas proved a decomposition theorem for Berge graphs saying that every Berge graph either is in a well understood basic class or has some kind of decomposition. Then, Chudnovsky proved a stronger theorem by restricting the allowed decompositions. We prove here a stronger theorem by restricting again the allowed decompositions. Motivation for this new theorem will be given in a work in preparation.

Suggested Citation

  • Nicolas Trotignon, 2005. "A new decomposition theorem for Berge graphs," Post-Print halshs-00196448, HAL.
  • Handle: RePEc:hal:journl:halshs-00196448
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00196448
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00196448/document
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00196448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.