IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00143454.html
   My bibliography  Save this paper

Comparaison de la prédictivité d'un réseau de neurones à rétropropagation avec celles des méthodes de régression linéaire, logistique et AID pour le calcul des scores en marketing direct

Author

Listed:
  • Pierre Desmet

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique, ESSEC Business School)

Abstract

In comparison with other statistical methods (MCO, logistic regression, disciminant analysis, AID), the advantages of a neural network with retropropagation are numerous and well known (non linear effects, distribution free variables, low sensibility to outlyers or missing variables). However, implementation and efficiency have not yet received a strong interest. The paper reviews comparative analyses and presents the results obtained in predicting a behavior in Fund raising.

Suggested Citation

  • Pierre Desmet, 1996. "Comparaison de la prédictivité d'un réseau de neurones à rétropropagation avec celles des méthodes de régression linéaire, logistique et AID pour le calcul des scores en marketing direct," Post-Print halshs-00143454, HAL.
  • Handle: RePEc:hal:journl:halshs-00143454
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00143454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.