IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00009828.html
   My bibliography  Save this paper

Future expansion of agriculture and pasture acts toamplify atmospheric CO2 levels in response to fossilfuel and land-use change emissions

Author

Listed:
  • Vincent Gitz

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Ciais

    (LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines - INSU - CNRS - Institut national des sciences de l'Univers - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - DRF (CEA) - Direction de Recherche Fondamentale (CEA) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives, ICOS-ATC - ICOS-ATC - LSCE - Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines - INSU - CNRS - Institut national des sciences de l'Univers - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - DRF (CEA) - Direction de Recherche Fondamentale (CEA) - CEA - Commissariat à l'énergie atomique et aux énergies alternatives)

Abstract

The expansion of crop and pastures to the detriment of forests results into an increase in atmospheric CO2. A first obvious cause is the loss of forest biomass and soil carbon during and after conversion. A second, generally ignored cause, is the reduction of the residence time of carbon when for example forests or grasslands are converted to cultivated land. This decreases the sink capacity of the global terrestrial biosphere, and thereby may amplify the atmospheric CO2 rise due to fossil and land-use carbon release. For the IPCC-A2 future scenario, characterized by high fossil and high land-use emissions, we show that the land-use amplifier effect adds 61 ppm extra CO2 in the atmosphere by 2100 as compared to former treatment of land-use processes in carbon models. Investigating the individual contribution of each of the 6 land-use transitions (forest - crop, forest - pasture, grassland -crop) to the amplifier effect indicates that the clearing of forest and grasslands to arable lands explains most of the CO2 amplification. The amplification effect is 50% higher than in a previous analysis by the same authors which did not consider neither the deforestation to pastures nor the ploughing of grasslands. Such an amplificationeffect is further examined in sensitivity tests where the net primary productivity is considered independant of atmospheric CO2. We also show that land-use changes which have already occurred in the recent past have a strong inertia at releasingCO2, and will contribute to about 1/3 of the amplification effect by 2100. These results suggest that there is an additionnal atmospheric benefit of preserving pristine ecosystems with high turnover times.

Suggested Citation

  • Vincent Gitz & Philippe Ciais, 2004. "Future expansion of agriculture and pasture acts toamplify atmospheric CO2 levels in response to fossilfuel and land-use change emissions," Post-Print halshs-00009828, HAL.
  • Handle: RePEc:hal:journl:halshs-00009828
    DOI: 10.1007/s10584-004-0065-5
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00009828
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00009828/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10584-004-0065-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bellassen, Valentin & Gitz, Vincent, 2008. "Reducing Emissions from Deforestation and Degradation in Cameroon -- Assessing costs and benefits," Ecological Economics, Elsevier, vol. 68(1-2), pages 336-344, December.
    2. Wirsenius, Stefan & Azar, Christian & Berndes, Göran, 2010. "How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?," Agricultural Systems, Elsevier, vol. 103(9), pages 621-638, November.

    More about this item

    Keywords

    land use; atmospheric CO2; fossil fuel;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00009828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.