Author
Listed:
- Xiaofan Liang
(University of Michigan [Dearborn] - University of Michigan System)
- Cesar Augusto Hidalgo
(TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)
- Pierre-Alexandre Balland
(TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)
- Siqi Zheng
(MIT - Massachusetts Institute of Technology)
- Jianghao Wang
(CAAS - Chinese Academy of Agricultural Sciences, UCAS - University of Chinese Academy of Sciences [Beijing] - CAS - Chinese Academy of Sciences [Beijing])
Abstract
Urban outputs, from economy to innovation, are known to grow as a power of a city's population. But, since large cities tend to be central in transportation and communication networks, the effects attributed to city size may be confounded with those of intercity connectivity. Here, we map intercity networks for the world's two largest economies (the United States and China) to explore whether a city's position in the networks of communication, human mobility, and scientific collaboration explains variance in a city's patenting activity that is unaccounted for by its population. We find evidence that models incorporating intercity connectivity outperform population-based models and exhibit stronger predictive power for patenting activity, particularly for technologies of more recent vintage (which we expect to be more complex or sophisticated). The effects of intercity connectivity are more robust in China, even after controlling for population, GDP, and education, but not in the United States once adjusted for GDP and education. This divergence suggests distinct urban network dynamics driving innovation in these regions. In China, models with social media and mobility networks explain more heterogeneity in the scaling of innovation, whereas in the United States, scientific collaboration plays a more significant role. These findings support the significance of a city's position within the intercity network in shaping its success in innovative activities.
Suggested Citation
Xiaofan Liang & Cesar Augusto Hidalgo & Pierre-Alexandre Balland & Siqi Zheng & Jianghao Wang, 2024.
"Intercity connectivity and urban innovation,"
Post-Print
hal-04935705, HAL.
Handle:
RePEc:hal:journl:hal-04935705
DOI: 10.1016/j.compenvurbsys.2024.102092
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04935705. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.