IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04933269.html
   My bibliography  Save this paper

Portfolio Allocation and Reinforcement Learning

Author

Listed:
  • René Garcia

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Alissa Marinenko

    (Unknown)

Abstract

In this chapter, we briefly review the methodology of reinforcement learning and describe its application to the financial problem of portfolio allocation. In this context, we define the environment as a set of states, captured by such financial variables as stock returns or technical indicators, and of actions, mainly the determination of wealth shares to invest in each asset. Optimal value functions are obtained through the Bellman optimality equation, a well-established principle in both reinforcement learning and portfolio optimization. Deep reinforcement learning algorithms have the advantage of providing approximate solutions since most portfolio problems lack analytical solutions. We describe several algorithms and apply them to classical portfolio allocation problems, where risk minimization and return maximization are combined with or without accounting for trading costs.

Suggested Citation

  • René Garcia & Alissa Marinenko, 2024. "Portfolio Allocation and Reinforcement Learning," Post-Print hal-04933269, HAL.
  • Handle: RePEc:hal:journl:hal-04933269
    DOI: 10.1142/9781800615212_0003
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04933269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.