IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04888252.html
   My bibliography  Save this paper

Monotone methods in counterparty risk models with nonlinear Black–Scholes-type equations

Author

Listed:
  • Bénédicte Alziary

    (IMT - Institut de Mathématiques de Toulouse UMR5219 - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INSA Toulouse - Institut National des Sciences Appliquées - Toulouse - INSA - Institut National des Sciences Appliquées - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique)

  • Peter Takáč

    (Universität Rostock)

Abstract

A nonlinear Black–Scholes-type equation is studied within counterparty risk models . The classical hypothesis on the uniform Lipschitz-continuity of the nonlinear reaction function allows for an equivalent transformation of the semilinear Black–Scholes equation into a standard parabolic problem with a monotone nonlinear reaction function and an inhomogeneous linear diffusion equation. This setting allows us to construct a scheme of monotone, increasing or decreasing, iterations that converge monotonically to the true solution. As typically any numerical solution of this problem uses most computational power for computing an approximate solution to the inhomogeneous linear diffusion equation, we discuss also this question and suggest several solution methods, including those based on Monte Carlo and finite differences/elements.

Suggested Citation

  • Bénédicte Alziary & Peter Takáč, 2022. "Monotone methods in counterparty risk models with nonlinear Black–Scholes-type equations," Post-Print hal-04888252, HAL.
  • Handle: RePEc:hal:journl:hal-04888252
    DOI: 10.1007/s40324-022-00306-0
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04888252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.