IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04875444.html
   My bibliography  Save this paper

Forecasting reserve risk for temporal dependent losses in insurance

Author

Listed:
  • Sawssen Araichi

    (LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Christian de Peretti

    (ECL - École Centrale de Lyon - Université de Lyon, LSAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Lotfi Belkacem

    (Université de Sousse)

Abstract

In non‐life insurance, insurance companies aim to accurately assess their reserves in order to fulfil their future obligations. They are based on methods provided by the literature review to evaluate their reserve risk. However, these methods do not take all claim characteristics and ignore the temporal dependence structure of claims, which can affect reserve amounts and lead to delayed payments for policyholders. Therefore, the aim is to investigate the temporal dependence structure among claim amounts (losses) in order to evaluate the accurate amounts of reserves. To achieve this goal, a model called the Generalized Autoregressive Conditional Sinistrality Model is proposed, which considers the temporal dependence characteristics of claims. This model is used to estimate model parameters, so the consistency of such an estimate is proven. Additionally, a bootstrap method adjusted to the Generalized Autoregressive Conditional Sinistrality model is proposed for predicting reserves and errors. The results reveal that considering temporal dependence between losses improves reserve distribution estimation and enhances solvency capital requirement. This means that insurance companies will be able to ensure they have sufficient funds available to meet their obligations to policyholders, thereby enhancing customer satisfaction and trust. Additionally, this can assist insurance companies in maintaining better regulatory compliance.

Suggested Citation

  • Sawssen Araichi & Christian de Peretti & Lotfi Belkacem, 2024. "Forecasting reserve risk for temporal dependent losses in insurance," Post-Print hal-04875444, HAL.
  • Handle: RePEc:hal:journl:hal-04875444
    DOI: 10.1002/ijfe.3014
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04875444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.