IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04869815.html
   My bibliography  Save this paper

The data revolution in justice

Author

Listed:
  • Manuel Ramos-Maqueda

    (WORLD BANK WASHINGTON USA - Partenaires IRSTEA - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, University of Oxford)

  • Daniel L. Chen

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS - Centre National de la Recherche Scientifique)

Abstract

This article explores the transformative potential of data science in enhancing justice systems globally. Leveraging the increasing availability of judicial data and the advancements of the digital revolution, this paper demonstrates how policymakers can significantly improve access, efficiency, and fairness within justice systems—crucial components of economic development as discussed in a companion paper (Ramos-Maqueda and Chen, 2024). We introduce a comprehensive framework for evaluating, diagnosing, and experimenting with judicial processes to deepen our understanding of judicial performance using data science methodologies. Key areas of focus include the application of machine learning and "text-as-data" techniques to enhance efficiency and identify disparities in judicial rulings. Through detailed case studies and empirical evidence, we illustrate how these technologies can address systemic shortcomings and drive meaningful reforms. By identifying specific areas where data science can bridge existing gaps, we aim to provide actionable insights for policymakers. Our findings highlight the profound impact of data-driven approaches on fostering a more just society and promoting sustainable economic growth. The paper concludes by suggesting future research directions and practical applications of data science in judicial contexts to ensure continuous improvement and innovation.

Suggested Citation

  • Manuel Ramos-Maqueda & Daniel L. Chen, 2025. "The data revolution in justice," Post-Print hal-04869815, HAL.
  • Handle: RePEc:hal:journl:hal-04869815
    DOI: 10.1016/j.worlddev.2024.106834
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04869815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.