IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04864387.html
   My bibliography  Save this paper

Technological innovation and its influence on energy risk management: Unpacking China’s energy consumption structure optimisation amidst climate change

Author

Listed:
  • D. Zhang
  • M. Zhao
  • Y. Wang
  • S. Vigne
  • R. Benkraiem

    (Audencia Business School)

Abstract

In the context of intensifying climate challenges, adept energy risk management is more pertinent than ever. This research pioneers an in-depth exploration into China's pronounced reliance on high-polluting fossil fuels, utilising a decade's worth of provincial data (2010–2020) to shed light on the intricate dynamics between technological innovation and energy consumption structure refinement. Notably, our findings unveil that technological advancements act as catalysts in streamlining energy consumption structures, serving as a bulwark against emergent climate-related risks. Yet, this positive trajectory is not immune to disruptions: volatility in crude oil futures prices has the potential to dampen these benefits, ushering in heightened financial risks. Our work further underscores pronounced regional variances; technological innovation yields diminished returns in the central and western regions compared to their eastern counterparts. An intriguing observation is the resilience exhibited by coal-dependent provinces to technological evolution, pointing towards entrenched energy infrastructure challenges. Crucially, this study is among the first to identify the dual roles of industrial structure evolution and energy pricing dynamics as mediators in energy risk management. Drawing from these insights, we advocate for a proactive harnessing of technological innovation, not merely as a tool, but as an imperative to drive China's energy transformation, foster sustainable consumption, and lay the foundation for a fortified green and low-carbon technological ecosystem.

Suggested Citation

  • D. Zhang & M. Zhao & Y. Wang & S. Vigne & R. Benkraiem, 2024. "Technological innovation and its influence on energy risk management: Unpacking China’s energy consumption structure optimisation amidst climate change," Post-Print hal-04864387, HAL.
  • Handle: RePEc:hal:journl:hal-04864387
    DOI: 10.1016/j.eneco.2024.107321
    Note: View the original document on HAL open archive server: https://hal.science/hal-04864387v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04864387v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.eneco.2024.107321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    2. Chen, Yingwen & Wong, Christina W.Y. & Yang, Rui & Miao, Xin, 2021. "Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China," Energy, Elsevier, vol. 237(C).
    3. Rajan, Raghuram G & Zingales, Luigi, 1998. "Financial Dependence and Growth," American Economic Review, American Economic Association, vol. 88(3), pages 559-586, June.
    4. Sha, Ru & Li, Jinye & Ge, Tao, 2021. "How do price distortions of fossil energy sources affect China's green economic efficiency?," Energy, Elsevier, vol. 232(C).
    5. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    6. Dong, Kangyin & Jiang, Qingzhe & Shahbaz, Muhammad & Zhao, Jun, 2021. "Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China," Energy Economics, Elsevier, vol. 99(C).
    7. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    8. Lin, Boqiang & Chen, Yu, 2019. "Will economic infrastructure development affect the energy intensity of China's manufacturing industry?," Energy Policy, Elsevier, vol. 132(C), pages 122-131.
    9. Melissa Dell, 2010. "The Persistent Effects of Peru's Mining Mita," Econometrica, Econometric Society, vol. 78(6), pages 1863-1903, November.
    10. Zhang, Dongyang & Wang, Jinli & Wang, Yizhi, 2023. "Greening through centralization of environmental monitoring?," Energy Economics, Elsevier, vol. 123(C).
    11. Silvério, Renan & Szklo, Alexandre, 2012. "The effect of the financial sector on the evolution of oil prices: Analysis of the contribution of the futures market to the price discovery process in the WTI spot market," Energy Economics, Elsevier, vol. 34(6), pages 1799-1808.
    12. Brookes, Leonard, 2004. "Energy efficiency fallacies--a postscript," Energy Policy, Elsevier, vol. 32(8), pages 945-947, June.
    13. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    14. Wang, Jianli & Qiu, Shushu & Yick, Ho Yin, 2022. "The influence of the Shanghai crude oil futures on the global and domestic oil markets," Energy, Elsevier, vol. 245(C).
    15. Gosens, Jorrit, 2020. "The greening of South-South trade: Levels, growth, and specialization of trade in clean energy technologies between countries in the global South," Renewable Energy, Elsevier, vol. 160(C), pages 931-943.
    16. Zhang, Dongyang, 2023. "Can environmental monitoring power transition curb corporate greenwashing behavior?," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 199-218.
    17. Chen, Yufen & Liu, Yanni, 2021. "How biased technological progress sustainably improve the energy efficiency: An empirical research of manufacturing industry in China," Energy, Elsevier, vol. 230(C).
    18. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    19. You, Jianmin & Zhang, Wei, 2022. "How heterogeneous technological progress promotes industrial structure upgrading and industrial carbon efficiency? Evidence from China's industries," Energy, Elsevier, vol. 247(C).
    20. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    21. Daron Acemoglu & Simon Johnson & James A. Robinson, 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation," American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
    22. Zhang, Dongyang & Kong, Qunxi & Wang, Yizhi & Vigne, Samuel A., 2023. "Exquisite workmanship through net-zero emissions? The effects of carbon emission trading policy on firms' export product quality," Energy Economics, Elsevier, vol. 123(C).
    23. Bousquet, Alain & Ladoux, Norbert, 2006. "Flexible versus designated technologies and interfuel substitution," Energy Economics, Elsevier, vol. 28(4), pages 426-443, July.
    24. Hu, Yuan & Peng, Ling & Li, Xiang & Yao, Xiaojing & Lin, Hui & Chi, Tianhe, 2018. "A novel evolution tree for analyzing the global energy consumption structure," Energy, Elsevier, vol. 147(C), pages 1177-1187.
    25. Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "Revisiting the relationship between spot and futures oil prices: Evidence from quantile cointegrating regression," Energy Economics, Elsevier, vol. 33(5), pages 924-935, September.
    26. Fisher-Vanden, Karen & Jefferson, Gary H. & Jingkui, Ma & Jianyi, Xu, 2006. "Technology development and energy productivity in China," Energy Economics, Elsevier, vol. 28(5-6), pages 690-705, November.
    27. Yang, Chuxiao & Hao, Yu & Irfan, Muhammad, 2021. "Energy consumption structural adjustment and carbon neutrality in the post-COVID-19 era," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 442-453.
    28. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    29. Alauddin, Mohammad & Ashman, Adrian & Nghiem, Son & Lovell, Knox, 2016. "What determines students’ study practices in higher education? An instrumental variable approach," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 46-54.
    30. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2009. "Research on energy-saving effect of technological progress based on Cobb-Douglas production function," Energy Policy, Elsevier, vol. 37(8), pages 2842-2846, August.
    31. Ferreira Neto, Amir B. & Perobelli, Fernando S. & Bastos, Suzana Q.A., 2014. "Comparing energy use structures: An input–output decomposition analysis of large economies," Energy Economics, Elsevier, vol. 43(C), pages 102-113.
    32. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
    33. Jorrit Gosens, 2020. "The greening of South-South trade: levels, growth, and specialization of trade in clean energy technologies between countries in the global South," CCEP Working Papers 2003, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    34. Luan, Bingjiang & Zou, Hong & Chen, Shuxing & Huang, Junbing, 2021. "The effect of industrial structure adjustment on China’s energy intensity: Evidence from linear and nonlinear analysis," Energy, Elsevier, vol. 218(C).
    35. Lim, Taekyoung & Tang, Tian & Bowen, William M., 2021. "The Impact of Intergovernmental Grants on Innovation in Clean Energy and Energy Conservation: Evidence from the American Recovery and Reinvestment Act," Energy Policy, Elsevier, vol. 148(PA).
    36. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    37. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rong, Xueyun & Chen, Haixin & Liu, Shuhao, 2024. "Nonlinear impact of climate risks on renewable energy stocks in China: A moderating effects study," International Review of Financial Analysis, Elsevier, vol. 96(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Dongyang & Zhao, Mengjiao & Wang, Yizhi & Vigne, Samuel A. & Benkraiem, Ramzi, 2024. "Technological innovation and its influence on energy risk management: Unpacking China’s energy consumption structure optimisation amidst climate change," Energy Economics, Elsevier, vol. 131(C).
    2. Jorge Antunes & Luis Alberiko Gil-Alana & Rossana Riccardi & Yong Tan & Peter Wanke, 2022. "Unveiling endogeneity and temporal dependence in energy prices and demand in Iberian countries: a stochastic hidden Markov model approach," Annals of Operations Research, Springer, vol. 313(1), pages 191-229, June.
    3. Shrestha, Keshab, 2014. "Price discovery in energy markets," Energy Economics, Elsevier, vol. 45(C), pages 229-233.
    4. Shao, Mingao & Hua, Yongjun, 2022. "Price discovery efficiency of China's crude oil futures: Evidence from the Shanghai crude oil futures market," Energy Economics, Elsevier, vol. 112(C).
    5. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    6. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    7. Trivedi, Jatin & Chakraborty, Dipanwita & Nobanee, Haitham, 2023. "Modelling the growth dynamics of sustainable renewable energy – Flourishing green financing," Energy Policy, Elsevier, vol. 183(C).
    8. Junior, Peterson Owusu & Tiwari, Aviral Kumar & Padhan, Hemachandra & Alagidede, Imhotep, 2020. "Analysis of EEMD-based quantile-in-quantile approach on spot- futures prices of energy and precious metals in India," Resources Policy, Elsevier, vol. 68(C).
    9. Dong, Xiao & Yu, Mingzhe, 2024. "Green bond issuance and green innovation: Evidence from China's energy industry," International Review of Financial Analysis, Elsevier, vol. 94(C).
    10. Guglielmo Maria Caporale & Davide Ciferri & Alessandro Girardi, 2014. "Time-Varying Spot and Futures Oil Price Dynamics," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(1), pages 78-97, February.
    11. Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2024. "Volatility spillovers across the spot and futures oil markets after news announcements," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    12. You‐How Go & Wee‐Yeap Lau, 2023. "What do we know about informational efficiency? Three puzzles and the new direction forward," Journal of Economic Surveys, Wiley Blackwell, vol. 37(4), pages 1489-1525, September.
    13. Zhang, Jintao & Su, Taoyong & Meng, Li, 2024. "Corporate earnings management strategy under environmental regulation: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 154-166.
    14. Mensi, Walid & Brahim, Mariem & Hammoudeh, Shawkat & Tiwari, Aviral Kumar & Kang, Sang Hoon, 2024. "Time-varying causality and correlations between spot and futures prices of natural gas, crude oil, heating oil, and gasoline," Resources Policy, Elsevier, vol. 93(C).
    15. Kim, Jaeho & Linn, Scott C., 2022. "Price discovery under model uncertainty," Energy Economics, Elsevier, vol. 107(C).
    16. Chang, Kuang-Liang & Lee, Chingnun, 2020. "The asymmetric spillover effect of the Markov switching mechanism from the futures market to the spot market," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 374-388.
    17. Wenchao Li & Lingyu Xu & Jian Xu & Ostic Dragana, 2022. "Carbon Reduction Effect of Green Technology Innovation from the Perspective of Energy Consumption and Efficiency," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    18. He, Yongda & Lin, Boqiang, 2019. "Regime differences and industry heterogeneity of the volatility transmission from the energy price to the PPI," Energy, Elsevier, vol. 176(C), pages 900-916.
    19. Nunn, Nathan & Trefler, Daniel, 2014. "Domestic Institutions as a Source of Comparative Advantage," Handbook of International Economics, in: Gopinath, G. & Helpman, . & Rogoff, K. (ed.), Handbook of International Economics, edition 1, volume 4, chapter 0, pages 263-315, Elsevier.
    20. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "Does China's low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model," Energy Economics, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04864387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.