IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04787960.html
   My bibliography  Save this paper

The Fairness of Credit Scoring Models

Author

Listed:
  • Christophe Hurlin

    (LEO - Laboratoire d'Économie d'Orleans [2022-...] - UO - Université d'Orléans - UT - Université de Tours - UCA - Université Clermont Auvergne)

  • Christophe Pérignon

    (HEC Paris - Ecole des Hautes Etudes Commerciales)

  • Sébastien Saurin

    (LEO - Laboratoire d'Économie d'Orleans [2022-...] - UO - Université d'Orléans - UT - Université de Tours - UCA - Université Clermont Auvergne)

Abstract

In credit markets, screening algorithms aim to discriminate between good-type and bad-type borrowers. However, when doing so, they can also discriminate between individuals sharing a protected attribute (e.g., gender, age, racial origin) and the rest of the population. This can be unintentional and originate from the training data set or from the model itself. We show how to formally test the algorithmic fairness of scoring models and how to identify the variables responsible for any lack of fairness. We then use these variables to optimize the fairness-performance tradeoff. Our framework provides guidance on how algorithmic fairness can be monitored by lenders, controlled by their regulators, improved for the benefit of protected groups, while still maintaining a high level of forecasting accuracy. This paper was accepted by Will Cong, finance. Funding: This work was supported by the Autorité de Contrôle Prudentiel et de Résolution (ACPR) Chair in Regulation and Systemic Risk, the Fintech Chair at Dauphine-PSL University, and the French National Research Agency (ANR) [MLEforRisk ANR-21-CE26-0007, Ecodec ANR-11-LABX-0047, and F-STAR ANR-17-CE26-0007-01]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03888 .

Suggested Citation

  • Christophe Hurlin & Christophe Pérignon & Sébastien Saurin, 2024. "The Fairness of Credit Scoring Models," Post-Print hal-04787960, HAL.
  • Handle: RePEc:hal:journl:hal-04787960
    DOI: 10.1287/mnsc.2022.03888
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04787960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.