IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04698453.html
   My bibliography  Save this paper

Smart Beamforming for High Mobility Millimeter-Wave Train-to-Infrastructure Networks: A Machine Learning Approach

Author

Listed:
  • Semah Mabrouki

    (COMNUM - IEMN - COMmunications NUMériques - IEMN - INSA Hauts-De-France - INSA Institut National des Sciences Appliquées Hauts-de-France - INSA - Institut National des Sciences Appliquées - IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille, IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille)

  • Iyad Dayoub

    (COMNUM - IEMN - COMmunications NUMériques - IEMN - INSA Hauts-De-France - INSA Institut National des Sciences Appliquées Hauts-de-France - INSA - Institut National des Sciences Appliquées - IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille, IEMN - Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 - Centrale Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique - UPHF - Université Polytechnique Hauts-de-France - JUNIA - JUNIA - UCL - Université catholique de Lille)

  • Marion Berbineau

    (COSYS-LEOST - Laboratoire Électronique Ondes et Signaux pour les Transports - Université Gustave Eiffel)

Abstract

The evolution of wireless communication systems is undergoing a transformative shift with the integration of Artificial Intelligence (AI). In the era of high-mobility millimeter-wave (mmWave) train-to-infrastructure (T2I) communication systems, the dynamic nature of the environment poses unique challenges for traditional beamforming approaches. Therefore, the demand for robust and adaptive beamforming solutions is paramount. This paper introduces a novel machine learning (ML)-driven beamforming solution tailored for predicting pairs of Three-dimensional (3D) beams at the receiver and transceiver sides in both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) scenarios. The proposed approach addresses the specific challenges posed by mmWave frequencies, train mobility, and diverse propagation and environmental conditions. The methodology of our work integrates the collection of a comprehensive dataset capturing the environmental conditions and encompassing the different characteristics of the train movement. To ensure accurate and timely predictions of 3D beam pairs, we carefully develop and compare various multi-class supervised machine learning classification algorithms. Experimental evaluations conducted in LoS and NLoS scenarios showcase the superior performance of the proposed beamforming technique. Our approach excels in accurately predicting 3D beams with negligible training overhead.

Suggested Citation

  • Semah Mabrouki & Iyad Dayoub & Marion Berbineau, 2024. "Smart Beamforming for High Mobility Millimeter-Wave Train-to-Infrastructure Networks: A Machine Learning Approach," Post-Print hal-04698453, HAL.
  • Handle: RePEc:hal:journl:hal-04698453
    DOI: 10.1109/CCECE59415.2024.10667240
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04698453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.